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ABSTRACT
This paper has two aims. First, in an expository style an index theory
for flows is presehted, which extends the classical Morse-theory for gradient

flows on manifolds. Secondly this theory is applied in the study of the
forced oscillation problem of time dependent (periodic in time) and asymptot-
ically linear Hamiltonian equations. Using the classical variational principle
for periodic solutions of Hamiltonian systems a Morse-theory for periodic
solutions of such systems is established. In particular a winding number,
similar to the Maslov index of a periodic solution is introduced, which is
related to the Morse-index of the corresponding critical point. This added
structure is useful in the interpretation of the periodic solutions found.

N

AMS (MOS) Subject Classifications: 58E05, 70H05, 58F22, 70H25

Key Words: Index theory for flows, winding number of a periodic solution,
forced oscillations of Hamiltonian equations, Morse theory
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SIGNIFICANCE AND EXPLANATION

The basic laws of Physics are governed by action principles. Equilibrium
states are critical points of an 'action functional.' In most cases (in
particular that of this report) these functionals are "infinitely indefinite"

and classical Morse theory does not apply. In this report a modified theory

aEas sk ot 205k 22

is described and is applied to find periodic solutions of Hamiltonian systems
of equations. In particular a theorem is proved which is analogous to Morse's

theorem relating the index of a closed geodesic (as a critical point of an

ARHANILA

Energy functional) to the number of conjugate points on the geodesic.

»

The report is one of many steps in the development of a "Morse Theory"

% for infinitely indefinite functionals.
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The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.
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MORSE TYPE INDEX THEORY FOR FLOWS AND PERIODIC SOLUTIONS
FOR HAMILTONIAN EQUATIONS

Charles Conley and Eduard Zehnder

Introduction

Let h = h(t,x) € CZ(R x RZ"), n > 2. We consider the time de-
pendent Hamiltonian vectorfield |

(1) x = dh'(t,x),  (t,x) € Rx R,

where J {s the standard symplectic structure in RZ", and where h'
denotes the gradient of h with respect to x. Assuming the Hamiltonian
function h to depend periodically on time:

h(t+T,x) = h(t,x) ,

for some T >.0, we are looking for periodic solutions of (1) having
perfod T, x(t) = x(t+T). Such solutions correspond in a one-to-one
way to the critical points of the following functional f defined on
the loop space which is simply the space of periodic functions having
period T:

T, .
(2) £(x) : = £ (3 < xadx > = h(t,x(t)) } dt.
0
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In fact, the equation (1) is the Euler equation of the variational
problem: extr f(x), and in order to have periodic solutions one has to
impose periodic boundary conditions: x(0) = x(T). The first variation
of f 1is then given by
T .
§f(x)y = g < = Jx - h'(t,x), y > dt.

In the following this variational approach will be used in order
to find periodic solutions. We observe that the functional f is neither
bounded from below nor from above. (If h 1is convex a different func-
tional could be used which is bounded from below, however we do not make
such a requirement.) It turns out, that the critical points of ¢ are
saddle points having infinite dimensional stable and unstable invariant
manifolds. In fact for the second variation of f at a critical point

Xq we find the expression:

-t

626 (x,)(y,,3,) = A 7L CIN RPN TS

The selfadjoint operator of this bilinear form (defined on the dense
subspace {x € Hl(o,T; RZ") | x(0) = x(T)} of LZ) can be seen to have a
purely discrete spectrum which is unbounded from below and from above
(see section 2). In.order to set up a Morse theory for periodic solutions
we need a rélation between the particular periodic solution of (1) and
its corresponding critical point of (2). For this purpose we introduce

for a periodic solution of (1) an index, which will turn out to be




roughly the signature of the Hessian of f at the corresponding critical
point. To do so we pick any periodic solution xo(t) = xo(t+r) of (1)
and look at the 1inearized equation along this solution, i.e. at the

linear equation

(3) y = Sh*(£,x (t))y .

Setting A(t): = h‘(t,xo(t)) we can rewrite this equation as
(4) y = JA(t)y ,

where A(t) is symmetric,” t - A(t) continuous, and A{t+T) = A(t),
i.e. is periodic of period T > 0. If now X(t) is the fundamental
‘solution of (4) which satisfies X(t) = JA(t) X(t) and X(o) = 1, then
X(t), o <t <T is an arc in the group of symplectic matrices

starting at the identity. The eigenvalues of the symplectic matrix X(T)
are called the Floquet multipliers associated to the periodic solution
xo(t). We shall single out as nondegenerate periodic solutions those

which do not have 1 as Floquet multiplier and hence define:

pefinition: A periodic solution xo(t) of (1) is called nondegenerate,
if it has no Floquet multiplier equal to 1.

This definition requires that the linear system (4), with
periodic coefficients, admits no nontrivial periodic solutions with

period T, as is well known from Floquet theory.
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We now consider the set of continuous loops of symmetric ma-
trices, A(t) = A(t+T). which have the additional property that the
corresponding equation (4) has no Floquet multiplier equal to 1. We
call this set P. In P an equivalence relation is introduced as
follows: two Toops A, (t) .and Al(t) are called equivalent, if one
loop can continuously be deformed into the other one wiphout leaving
the 'set P of loops under consideration. In other words, there exists
a continuous family Aa(t). 0 <o <1 of loops, such that Ac(t) = A,(t)
for o =0 and Aa(t) = Al(t) for o =1, and such that 1 is not an

B

.= v

eigenvalue of XO(T) for all o0 < o < 1, where Xo(t) is the fundamen-

tal solution satisfying ia(t) = JAa(t)-Xq(t) and Xc(o) = 1, It turns
out that the set P decomposes into countably many equivalence classes,
which are characterized by an integer, which will first be defined for
a special constant loop.

Let A(t) =S be a constant loop in P, the correspénding fun-
damental solution is then exp(tJS), and 1 is not a Fléquet multiplier
if exp(TJS) has no eigenvalue equal to 1. For an eigenvalue A of JS
we therefore have A € itZ, where < =-%l . We now consider the purely
imaginary eigenvalue§ of JS, and assume them to be distinct from each
other. They occur in pairs. If (x,X) dis a pair of purely imaginary
eigenvalues with corresponding complex eigenvectors e.E} then
<€, Je > #0 1is purely imaginary, and we set a(\): = sian(- i
<€, Je >) Im A, Observe that a(r) = a(X) = a(-1). Since, by assump-
tion, a(r) € tZ, there is an integer m such that mr < a(}2) < (m+l)r.

In this case we set [a(A)] =m + %w and define

(5) i(s) = i (a(a)) €2,
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where in the above summation A runs over all purely imaginary eigen-
values of JS. If there are no such eigenvalues the sum is understood
to be zero. Observe that j(S) is an integer, since there are an even
number of purely imaginary eigenvalues. As index of this special

constant loop A(t) =S in P we set
(6) ind(A(t)) = j(S).
With this notation we can formulate:

Theorem 1
Each equivalance class of the set P 04 Loops contains condtant Loops
A(t) = S {for which ind(A(t)) 48 deiined as above. ALL Auch condtant
Loops in the same equivalence class have the same inde;, and constant
Loops in different components 0§ P have different indices. To every
integen j € 7 their is exactly one equivalence cfass having the index
3. |

In view of this theorem it is only necessary to define the indei
for the special class of constant loops chosen above. The theorem states

that the index is well defined on components.

By means of theorem 1 we shall associate to every nondegenerate
periodic solution xo(t) of the equation (1) the index j of the
correspcnding linearized equation (3). After these explanations we can
formulate an existence statement for periodic solutions of an asympto-

tically linear Hamiltonian system,
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Theorem 2,

Let h = h(t,x) € C3(R x R%"), n > 2, be periodic in time of period
T > 0, h(t+T,x) = h(t,x). Assume (i) the Hessian 0§ h 44 bounded:
-8 < h*(t,x) <8 §or all (t,x) € R x R and gon some constant

8 > 0. Assume (ii) the Haﬁéztonian vectongield to be asymptotically
Linean

Jh'(t,x) = JA_(t)x + o(]x]), as [x]| + =

uniformly in t, whene A _(t) = A (t4T) 48 a continuous Lcop 04
symmetric matrnices. Assume (iii) that the trivial solution of the
equation X = JA_(t)x 48 nondegenerate and denote its 4index by J_.
Then the following statements hold:

(1) There exists a periodic sofution 0§ period T 4or (1). 14
this periodic solution L3 nondegenerate with index jof then'thene 48
a second T-periodic solution, provided jo £ j_. Morecver i there are
4w nondegenewate perdiodic sofutions therne 48 alsc a third periodic
solution,

(2) Assume éll the periodic solutions are nondegenetate, ithen
there are only {initely many cf them and theltr aumber L8 odd. 13 jk’

1 < k < m, denote their indices we iave the jollowing {dentity:

Jo .
= t + t (1+t) Qd(t) R
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whiete d > 0 s an {nteger, and where Qd(t) L8 a polunomial havding

nonnegative dintegen coejyicients.

The theorem extends earlier results in [3] and [14] . We point
out an interesting special case of the above statement, which can be
viewed as a generalization to higher dimensions of the Poincaré&-Birk-
hoff fixed point theorem for mappings in the plane. This well known
theorem states that a measure preserving homeomorphism of an annulus,
which twists the two boundaries in opposite directions has at least two
fixed points, see G.D, Birkhoff [5] and, more recently, M. Brown and
W.D. Neumann [6] .

Conollany.
Let h = h(t,x) € 3R x R%™), n > 2 be periodic, h(t+T),x) = h(t,x)

and Let the Hessian of h to be bounded. Assume

Jh'(t,x) = JA_(t)x + o([x]) as x| +=

Jh'(t,x) = JA,(t)x + o(|x!) as x| +o

uniformly in t, jor two continuous Loops Ao(t+T) = Ao(t) and

A (t+T) = A_(t). Assume that the two &inear systems X = JA_(t)x and
X = JAo(t)x do not admit any nontrivial T-pericdic solutions, and de-
note by j_ and j° the indices 04 these two &inear systems. 14
Jo # 3, then there exists a nontrivial T-pericdic solution of (1).
Morzover, Lf this perdlcdic sciution 43 also aondegenctate thnen there

L8 a seeend T-periodic solution.
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In other words, if the two linear systems with Ao(t) and
A_(t) cannot be continuously deformed into each other within the set
P, then we conclude the existence of a T-periodic orbit. The corollary
only claims the existence of one T-periodic solution except if the non-
degeneracy condition is satisfied. This is in contrast to the Poincaré-
Birkhoff fixed point theorem which always guarantees two fixed points.
Birkhoff's original proof in [5] also suggests, that the integer
]jo-j_] is a measure for the lower bound of the number of periodic
solutions of (1). Our proof of the abcve statement being based on a
Morse-type index theory does not allow such a conclusion. However, our
statements given here may allow improvements similar to those allowed
by using Ljusternik's category theory, when it is added to the classical
Morse theory. As a sideremark we recall, however, that under additional
assumptions the following result has been proved by means of mini-max

techniques:

Theorem [3] .
Llet h be as in the corollary and assume, 4in addétion! h(t,x) = h(t,-x)
for att (t,x) € R x RZ". Morcoven, Lot A (t) = A  and A(t) = A, be
dindependent 0§ t. Then (1) has at Zeast ijo"j..: nontuiviel pairns (x(t),
-x(t)) o4 T-periodic soluticns.

As for the proof of theorem 2. we are looking for critical
points of the functional f defined on the 1Pop space. The assumption

(1) allows the application of an analytical device due to H. Amann (1],
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which in this context was already used in {2] and which reduces the
study of critical points of f to the study of critical points of a
related functional, a, defined on a finite dimensional space Z, namely
the trigonometrical polynomials of a fixed finite order. There exists
an injective map u from Z into the whole lcop space such that the

critical points of the functional a(z) = f(u(z)) correspond in a one

;
d
{
d
]
!
:
|
]

to one way to the critical points u = u(z) of f 1in the loop space.
To the gradient flow z =a'(z) we then apply a Morse-type index theory

for flows, which is represented in section 3.

In order to briefly outline this index theory for flows we con-
sider a flow on a topological space which is not necessarily a gradient
flow on a manifold. To an isolated invariant set S an index pair
(Nl’No) can be associated, where Ng € Ny is roughly the "exit set"
of Nl’ and vhere S C int(N1 \ No)’ see section 3. The homotopy type
of the pointed space Nl/No then does not depend on the particular

choice of index pairs for S and is called the index of S, and de-

noted by h(S): = [NI/No]‘ We therefore can associate to an isolated
invariant set S the algebraic invariant p(t,h(S)), which is the series

v
in t whose coefficients are the ranks of Cech cohomclogy of an index-

Ml Moot laiiacia s

pair (Nl’No) for S. The index theory for flows then reiates the al-
gebraic invariants of S to the algebraic invariants of a Morse de-
composition of S. The result is as follows (for a precise formulation

of the statement we refer to section 3)
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Theorem 3

let S be an wsolated invaniant set, and et (Ml""’Mm) be an cadeted
Moxse decomposiiion 0§ S. whese Mk C S atwe wodated and Lavavdzit.
Then zhe@c 48 a {dltwation No c N1 c...c Nm jor Liis Monse decom-
posdition, such that (Nm,No) LS an 4ndex padlr jon S and such that
(Nj’Nj-l) 48 an d{ndex pair {04 Mj' 1§ we set h(Hj) = [Nj/Nj-ll and
h(S) = (N m/No] » then the 4ollowing {dentity heolds:

I, PLEAOL) = BEA(S)) + (150) Q(8)

where Q(t) 4s a senies {in t having only nonnegative integen
coefgicients. This identity can be viewed as a generalization of ihe
Monse inequalities.

The development outlined here extends some of the results in
(4] . It can be viewed as a generalization of Morse theory for flows
other than gradient flows on spaces other than manifolds. An index is
associated not only to critical points but to any isolated invariant
set of a Tocal flow. In addition to the classical Morse theory it in-
cludes Smale's generalization for periodic orbits [8]. More cogently,
an analogue of the "Homotopy Axiom" of Leray-Schauder degree theory is
possible in this generalized torse theory. In this connection we observe
that even in applications to gradient flows it is necéssary to have an
index for sets other than critical points in order to Have this ana-
logue, since a critical point may under deforma;ion of the flow be con-
tinued to a set which does not consist just of critical points, With
this addition, the generalized lorse theory becomes a useful tool in

bifurcation theory.
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The application of this index theory to the problem of periodic
solutions is as follows. We first observe that due to the assumption
(ii) and (iii) in theorem 2 the set S of .uinded solutions of the
gradient flow a' {s compact, hence has an index. Using the invariance
of the index under deformations crucially, this index is computed to be

the homotopy type of a pointed sphere:
lm. 1
h(S) =(S ], m = z-dim Z-3_ »

hence p(t,h(S)) = tm°. Here §m° denotes a sphere of dimension m_

with a distinguishes point, * , that is a pair (Sm', #). The critical

points of the functional a for which ve are 100kjng comprise a Morse
decomposition of the isolated invariant set. It turns out that if a periodir
solution is nondegenerate with index j, then the corresponding critical point,

z2€ Z,. of a 1is an isolated invariant set with index
h( (2} ) =(S™ , m=gdinZ -3,

hence p(t,h( (2} )) = t™, The statements in theorem 2 are then an imme-

diate consequence of theorem 3.

The statement of the above Corollary generalizes a cérresponding
result of H. Amann and E. Zehnder [3] improved by Kung-Ching Chang [14],
where the linear systems "at o" and "at =" are assumed to be independent
of time. It should be said that there are many recent existence results
of periodic solutions of timedependent Ham’1tonian systems, which how-
ever postulate strong asymptotic nonlinearities of the Hamiltonian vector-

field. For example, assuming a superquadratic behaviour of the Hamiltonian

-11-
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function at =, and an elliptic timeindependent equilibrium point at o,
P. Rabinowitz [15] finds not only a T-periodic solution, but also sub-
harmonic solutions, i.e. solutions of period kT, k € N, In such a si-
tuation it is not obvious how to isolate a suitable set of bounded so-
lutions of the gradient system, to which the above outlined index-theory
can be applied. The proof of Rabinowitz foliows different lines and is
based on mini-max arguments. We point out that the number of T-periodic

solutions for such highly nonlinear systems is expected to be large. In

the special case of dimension n = 1 this is in fact known, see H. Jacobowitz

[25] and P. Hartmann (26 ], special results in higher dimensions are due

to A. Bahri and H. Beresticki [24].

The organization of the paper is as follows. In the first section
we describe the index for periodic solutions of timedependent Hamiltonian
systems, In the second section theorem 2 will be proved. In section 3 the
index theory for flows is represented. It makes use of the concepts and
tools developed in (4], however for the readers convenience it will be
developed from the beginning. We point out that the setting in which
this theory is developed is more general than might the first be noticed.
For example, it readily adapts to diffusion reaction equations, to func-
tional delay equations and (as will be seen in a later.paper) to the
treatment of indefinite functionals in infinite dimensions, for which
it is not immediately clear there even is a flow. To bring this out some
otherwise irrelevant propositions are added. The organization of the

paper is seen from the follpwing table of contents.
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helpful discussions and suggestions. The paper was done while the first
autor was at the Ruhr-University Bochum as recipient of a Humboldt

award,

1. Arcs in Sn(n,R), n 2 2

The aim of this section is to prove theorem 1 in the introduction. With

J€E Jf(RZ") we denote the standard symplectic structure in RZ":

0 -1
J = ’
I 0
where 1 1{s the identity matrix in R". We recall, that the group of

2N s defined as Sp(n,R) = (M e L(RZ") |
MIJM = J}, and we abbreviate in the following W = Sp(n,R). With

symplectic matrices in R

W* C W we denote the subset W* = (M e W [.1 is not an eigenvalue of

M}. Now consider the linear differential equation

(1.1) x = JA(t)x

in RZ", vhere A(t+l) = A(t) 1is continuous and periodic with period 1.

If X(t) 1is the fundamental solution:
(1.2) X(t) = JA(t) X(t), X(0) = 1,

then X(t), o <t <1 1is an arc in W. We consider loops A(t) with the

property that X(1) € W*, There is a one to one correspondence between the

-14-
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set of such equations and the set of continuously differentiable curves

X(t), 0 <t <1, in W satisfying

X(o) =1, X(1) € w*
X*(1) = X*(0) X(1) ,

(1.3)

the correspondence being given by JA(t) = X'(t) x(t)'l. In order to
prove theorem 1 we thus are led to investigate when two such paths in
W can be continuously be deformed into each other without leaving that
class. We introduce as P the set of paths vy: [0,1] ~ W such that
v(o) =1 and y(1l) € W* :

(1.4) P = {y: [0,1] ~ W [y continuous, v(0o) = 1. and v(1) € W*} .

We give the set P the compact dpen topology and consider the equi-
valence classes defined as follows: We call 1 and Yo € P equivalent,
YL VY ,1f there exist a continuous deformation §: [0,1] x (0,1] - W

satisfying

§(t,0) = yl(t) and §(t,l) = yz(t)
(1.5) §(lyo)ewr, - s<1

§(0,0) = 1 0<o<1 .

A simple example of a path in P is an exponential path, defined
as follows. Pick a symmetric matrix S € L(RZ"), then v(t) = exp(t JS),
0<t<l is apath in W. This path is in P 1if and only if
exp JS € W*, or equivalently if and only if 2nin 1is not an eigenvalue

of JS for every integer n € Z, Such a path will be called an exponen-

«15-
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tial path. An exponential path corresponds to a constant loop A(t) =S,

0<t<l in (1),

In order to formulate our first result, we define an index for
an exponential path as we did in the introduction. We assume
exp JS € W* and, in addition, we assume the purely imaginary eigen-
values of JS to be distinct. As index of the exponential path y € P,

v(t) = exp(tJS) we then define
(1.6) ind(y) = j(S) € Z,
where the righthand side is defined by formula (5) of the introduction.

Theorem 1.1,

Each equivalence class of P contains an exponential path, v(t) =

= exp(tJdS) 4on which ind(y) 48 defined as above. ALl such exponential
paths in the same equivalence class have the same index, and exponential
paths in disﬂeaenk components have different indices. To every integen
Je il thee 48 exactly one equivalence class having the index J.

In view of this theorem it is only necessary éo define the in-
dex for the special class of paths in P chosen above: The theorem
says, that the index actually depgnds only on the component of ° con-
taining the path, But at the end of the proof of theorem |-! we will be

able to define an index for every y € P intrinsically.

-l6-
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Theorem 1 of the introduction is an immediate consequence of

theorem 1.1. In fact, the deformations (1.5) can be chosen to be diffe-
rentiable and to satisfy (1.3) for every o < o < 1. This can effective-
ly be proved using the Tocal representaticn of canonical maps by means
of “generating functions"; for details we refer to [(13]. The proof of

theorem 1.1 proceeds in several steps.

1.1 Contractible loops in Sp(n,R)

Every real symplectic matrix M can be represented in polar form as
(1.7) ‘ M=P.0 ,

where P = (MMT)I/2 is a positive definite symmetric und symplectic

1

matrix, and where 0 = P""M 1is an orthogonal symplectic matrix. This

representation (1.7) is unique. The set of the above matrices P has

the unique representation:

a a .
(1.8) P =expA, A=<1 2) , alsaI, azsag.
2

where 3,3, le(R"). In particular, the set of positive definite symplaec-

tic and symmetric matrices is contractible, so are then all the loops in

this set.

Each matrix 0, which is orthogonal and symplectic has the form

u, . -u
1 2 —0 - i
(1.9) 0= < » U=y o+,

-17-




IR I I T /R TR TTw TR TR o YW oy vw m N =g e — oy vy w4 WG wel Y WD me wm — we w e e -
................................ T, T T T T TN TETE TN TR T Tivu RS ,.,-,.‘.1;-7-‘

with U = w ¢ iuz being & unitary matrix in .C(Cn). This correspondence
is one to ome. Thesg single facts are well kmewn, see for example M. Levi
(16] and Gelfand-Lidskii {17].

Let mnom vy: lo, 1§ - Sp(n,R) be amy continuous arc of symplectic
matrices and let u(t) bg the associated arc of unitary matrices. Let
A(t) be a coatinwems fumctiem such that det U(t) = exp (ia(t)). Then
3(1) - 4(0) depends only en y. This number will be denoted by a(y).

If v is a loap, f.0. v(@) = y(1), then 4(y) is an integer multiple
of 2,

Leema 1.1, The Loop v -i-l contractible in $p(n,R) 4§ and only i{

A{y) = o,

R e

Proof: The stlt_nt {s well knem for the group U(n) of unitary
matrices, to which we shall reduce the Lemma. According to (1.7) we have
v(t) = P(t) O(t), where P(t) 1is a loop of positive definite symmetric
and symplectic matrices hemce contractible, while (Q(t) corresponds by
('1.9) to a Togp of wnitary matrices, which is contractible if and only

if A(y) =0, o

1.2, Change of sjuplectte basts

A symplectic basts in Rh is & basis (01....,en, fl,...,fn) =:(e,f)
such that for the mstrix M: = (e,f) € .(_(RZ") vie have MTJM = J and
MH = 1. Tue M 1s symplectic and ortheganal. Since the unitary group

is-connected, the set of sy—qncctic basis is also connected.

-18-
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- and let 00 be a symplectic orthogonal matrix, then the unitary matrix
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Let U be the unitary matrix associated to an ! < Sp(n,R),

associated to _S;I'M-Oo € Sp(n,R) s u -1 . U . Eb, where EB corres-

0
l.v.3 ) = det U we conclude:

ponds to 00. Since det( u o

Lemma 1.2, .

Let O(t) be an arc of symplectic orthogonal matrices, and £t

v(t) = 0(t)"1.M-0(t), for some M€ Sp(n,R). Then A(y) = 0. Thus <§ ¥
{8 an are ending at M, and if 0 4is symplectic orthogonal, then y can
be extended £o an arc Y ending at 0"1.M-0 .in such a way that

a(y) = a(Y).

1.3. Changing the spectrum

Let M e Sp(n,R) then the eigenvalues of M occur in groups: if A is

1 1

an eigenvalue, then also A", X and X = are eigenvalues. Let E(a) =

=E be the generalized eigenspace for the eigenvalue o« of M, i.e.

the nullspace of (M-a)zn. The following statement is well known:

Lerma 1.3,
1§ aB A1 then < JEG, E8 > =0,
Proof: Let EE be the nullspace of (H-a)k, so that o = Eg c Ei c...C

c 2" « £ . It suffices to prove < JES, E > =0 if ag # 1 for all
k.2 > 0, which will be done by induction with respect to k + . For

k + 2 = 0 the statement is trivial and we shall assume < JE:, E; > =0

-19-
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for x+\ < k+2. Let S, € Eu and 53 € Ei and set 5, * (n-a)s_ € E.
i

1'1 = [ 1 -
3 . Thus aSa r»tsa-s“ and at.-m' t‘.

and therefore, ¥ being symplectic, we conclude a8 <« Jt'. $, >
1 1 . k
g >« JMsa, $g > - < Jsu. ""3 >, Since ns“ e E. and

MsB € E;’, the last two terms vanish by the induction hypethesis asd hence

1
and S; = (H-B)s3 €E
= < Jsa, S
(aB = 1) < Js $3 > =0, which proves the Lemma. e

We next describe how to change the efgenwalues of an eigemvalue
group of a symplectic matriv in such a way that the sigenspaces remain un-
changed. We pick an eigenvalue 1 of M € Sp(n,R). For every cemplex
number veE€C, v #0 we define a new matrix H' by:

M, =M on E(u) if u¢ (A,A'l, f.r")
M, ] E((R)) = e(v) M E(e(a))

-1. Z or ‘i"'l .Observe the definitiom requires that
1 ™

matrix M, is clearly real, it is also symplectic. Namely, if x @ f(a)

where ¢(z) =z, 2
if A 1s real, then v is real and if 7 = A-l, thea T = v

and y € E(B), then by Lemma 1.3, < Jvi,Hvy >= < dx,y>=20 if o8 £ 1.
Assume of = 1 and assume o ¢ (x,x‘l, X‘,X"l ), then ¢ lex,lvy 3

= < JMx, My > = < Jx,y >. If on the other hand a € (A2}, T,X"1) then
by construction we again have < Jva,ny > =2 < JMx, My > o < Ju,y >,
hence MI JMV = J proving the claim. We now shall use the above con-

struction in order to prove

-20-
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lerma 1.4,

”~
L%

Let W™ C W* be the subset 04 matrices whose eigenvalues with unit modu-
s ane equal & -1, Then W** (s a stieng dejonmaticn retiact of WH,

LAty

Proo4: The closed upper nalf disk in the compliex plane minus the two

B L

points (o} and ({1} admits a strong deformation retraction r(z,t),
0<t<1 toanarc which is interior to the half disk except at the
points {-1} and (1/2}, and connecting these two points. We choose
this deformation retraction to preserve reality and unit modulus. In

order to construct r(z,t) Jjust observe that

~4 o v 1

is homeomorphic to

4
=1 Y,

0 . )
We extend r to the complex plane minus the two points {o} and ({1}

by setting r(Z,t) = r{z,t] and r(z'l,t) = r(z,t)'l. The deformation
8§ = §(M.t) of W* is then carried out by simply deforming the spectra

of M€ W* by means of r leaving the eigenspace alone: §(M,t) -xM v(x,t)°

where v(A,t) = r(x,t)x » and where the product runs over all the e1gen—

value groups of M, e

=21~
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1.4 Change to distinct eigenvalues

£

:' Lemma 1.5,

14 Any nedighborhood 05 M€ W contains an are <n W conmnecting M o a

;? matiuix with distinet elgenvalues, none 0§ which is equal to -1,

¢

3 Prco4: Assume X is an eigenvalue in the eigenvalue group (x,k'l;f;f'lj
W of M, By Lemma 1.3, if £ € E(A) and if =n € E(u) then either < g,Jn>=0.
‘\ -

A or u=2x 1. Choose an orthogonal basis Ereeesby for E()) such that
g Mg, = Ag;, and a dual basis ny.....n for E(T"!) such that

§ < &40 Iy > = 65, Given a complex v & C, define M, as follows:

Al = "1 = —_=1 -—

3 Mogp =g Mg =ving

3 =-1

- — I
M\’nl'\’ anngnla\) an [

if ¢ 1is any of the remaining £5,...,8 . OF ny,.eeymy or if 7 € E(u),

u ¢ (A,A'l,'x,if'l), we then set Mv ¢ = ¢. One checks easily that M
is real and symplectic. Now set B, = MvM, then v 1is an eigenvalue of
8, and if wg (7L TT7H)

s Ak is an eigenvalue of M, it is also an

SW NN

eigenvalue of Bv with the same eigenspace. One can verify by a calcu-

lation which we forego, that indeed the dimension of the generalized

U
s

eigenspace of Bv corresponding to A 1is one less than that of M. A

similar construction can be carried out in the cases that x is real
J

SRR | A,

| and that A is on the unit circle. Finally, multiplying A by e with
b

E; a small ¢, if necessary, it can be arranged that -1 1is not an eigen-

h

? value. Using induction the proof of the 'emma follows, e

..*
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1.5 Normalforms for distinct eigenvalues [

Assume M € Sp(n,R) has distinct eigenvalues none of which is equal to
-1. Then, as it is easily verified, there is a symplectic base in which
the matrix has a block diagonal form. Every block corresponds to an
eigenvalue group and has one of the following three normalforms, where
we abbreviate

cos a - sin a

R(G) HERS ’ d
sin a coS o '

(1) Hyperbolic plane (eigenvalue group (8,8'1), 8 real)

M /'B ° > P=M, O . 1, J (O - )
\ 0 gt . o o A1 o

(2) Elliptic plane (A,X), A = e‘“, o real, ‘

AT &

M=R(a), P=1, 0=M, J=

/—\
— o
]

o —

NS——
A

- ==1 ie
1, AsA ), A = pe

(3) Complex eigenvalue group (A,\”

p R(8) )
Ma _1
0 o "R(3)
p ) R(8) ) 0 -1
P = -1 , 0= ’ J = .
0 P ) R(8) 1 0

After the normal form of the block, the corresponding block for P,C

dekidinndndedadushubndeddifie intecusiaceninciasiodolind oot

&_A_LM a4 4

according to the polarform, M = PO and the corresponding symplectic

-23-




structure are indicated. For the corresponding U one reads off from

these normalforms

1 case (1)
(1.10) detU = el case (2) .
1 case (3)

(1,-i) is the eigenvector for the

Note also, that in case_(Z), e
eigenvalue ei“ and <e, Je > = 2i. If 0 1is the orthogonal symplec-
tic matrix which puts M into the block diagonal form M1 = O'IMO, we

can connect the identity and the matrix 0' by an arc 0(t) in the set

of symplectic orthogonal matrices and find by Lemma 1.2

Lemma 1.6.

Suppose M € Sp(n,R) has distinct eigenvalues none of which 48 equal to
-1, then M .is comnected by an are vy(t) <o a matrix .Ml in the abave
block diagonal form, such that, in addition, a(y) = 0.

Using this result we shall prove

Lenma 1.7,

W* has fwo components, each 0f which 48 simply ccnnected relative to W.
One component, wg, containd the matrix W, = - id, and the degree o4 the
fixed point o of themap x ~Mx 4is +1 4§ M€ W}. The other compo-

nent, W* coniaing the matuix

2 o
-I
1/2
0 -1
-24_
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where I 4s the {dentity in (n-1) dimensions. Tie degree 0{ M€ W*

s -1,

waoﬁ:

Pick M € W* and connect it by an arc in W* to an element which

is an block diagonal form, using Lemma 1.5 and Lemma 1.6. Now,

if 8 <0 in case (1), as well in the cases (2) and (3), the blocks
are obviously connected ta blocks -1 by an arc in W*, Also the block
in case (3) is connected to two blocks of type (1) with 8 > o by
connecting ¢ to zero with o # 1. One sees that conversely two po-
sitive hyperbolic planes can be brought together and connected to -1.
(Observe that the block in (3) can also be conneéted to two elliptic
planes, but the corresponding a's will have opposite signs as is clear
since det U = 1; this is known from the study of strong stability
classes, see [16] ). Thus depending on the parity of the number of po-
sitive hyperbolic planes, M € W* can be connected either to W_ orto
H+. But these two matrices cannot lie in the same component of W* since
they have different degrees for the fixed point o, That W* is simply |
connected relative to W follows now from Lemma 1.4, In fact, if vy is
any loop, then as one sees from the above forms, A(y) depends only on
the variation of the arguments of the eigenvalues in the elliptic planes
(case (2)), since by iemma 1.2 changes of basis do not contribute. By
Lemma 1.4 any loop in W* can be deformed to one on which the eigén-
values cf modulus one are all equal to -1, hence to one for which a(y)=0.

] By Lemma 1.1, the loop is contractible in U, e

-25-
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1.6. Proof of theorem 1.1.

Let y € P be given. Extend vy by an arc in W* using Lemma 1,7, to a
path Y connecting 1 to either W_ or W_. We treat the case W_, the

other case is similar,

Using now the assumption n > 2 we observe that the matrix W_
has countably many real logarithms. Namely, if we define for an integer

2 € Z the symmetric matrix Az € J:(RZ") by

1n2

£ n2 o

then

For the special exponential arcs ;2 € P, defined by ;z(t) = exp(tJAz),

0 <t <1, which connect 1 with W_ we find by (1.10) that

A(;z) = 274 + n(n-1). Pick some 2 € Z and define the loop vy by first

following ¥ from 1 to W_ and then following ;2 backwards from W_
ii to 1. Then A(yl) = A(Y) - A(;l) = 2mm for some integer m . Therefore,

if we set s = ¢+m, we find for the new loop Yoo defined by following

Y to H_ but then following v_ backwards to 1, that a(y,) = o. Mence,

S

-26-




by Lemma 1.1, the loop Yo is contractible in W. This shows that the path

;j vy € P and the exponential path ;s’ where ;S(t) = exp(tJAs), are in the
“ same component of P,
.
% t)
¢ " v(1)
,“ 1 I
by >
2 exp(tdA) W,
: Now consider any exponential path vy = y(t) = e%>%, o <ts<1
f' where JS E.((Rzn) has distinct eigenvalues. If the purely imanigary
? eigenvalues  of JS are :ial,...,:iak, normalized so that eJSe:=iae
8 implies < %, Js >il, 0, then by means of the normalform (2) in sec-
tion 1.5 one sees that |
(1.11) a(e95t) & -
j=1 J
:3 Extend now this path y to a path Y connecting 1 to either W, or
4 W_, say W_, in such a way that the eigenvalues of non unit medulus stay
kt that way up to the last point, so that they do non contribute to the a
g of the extended path. If a4 1 <j <k Ties in the open interval be-

tween 2nm and 2(n+l)r for some integer n, it is during the defor-
mation changed to (2n+l)r, i.e. moved to the closest odd multiple of =,

i Therefore, if A = ia denote the purely imaginary eigenvalues of JS we
find

.
Salaliis

(1.12) A(Y) = = i.‘ [a(A)] = =j(S).

-27-
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0f course, since W* 1is simply connected relative to W, any way of

JSt

extending vy(t) = e to W_ with an arc in W* gives a ?& with

A(?i) = nj(S). It follows that all exponential paths in the same
comnonent of P have the same index, definad by 2(Y), and if two ex-

ponential paths have the same index, they lie in the same component of

P. In fact, let e"mt

eJSt is deformed, then a(e

be the arc connecting 1 with W_ to which

Js,t
) = ai(s). I now yy(t) =e ' Ties

in the same component as y(t) = eJSt

, it can also be qeformed to the
JAt JAt, _ _. . s

same path e, hence A(e™" ") = nJ(Sl), and therefore J(Sl) = j(S).

Conversely, if j(Sl) = j(S) for two exponential path's, then they can

JAt

be deformed to the same path e and 1ie therefore in the same com-

ponent of P. This finishes the proof of theorem 1, e

We now can define an index for any path y & P, not just for an
exponential path as follows. We extend y by an arc in W* to a path

¥y connecting 1 to either W_ or W_ and put

(1.13) i) 1 =3 A,

In view of Lemma 1.1, and Lemma 1.7. the right hand side does not de-
pend on the extension. It moreover is an integer, which characterizes the
component to which v(t) belongs.

If y € P, then there is the following relation bgtween the in-
dex, j(v), and the fixed point degree o = deg(v(1l)) of the fixed point

o of the symplectic map y(1l) € W* : x - y(1)x, namely:

(1.14) deg(v(1)) = (-1)3(¥)+n

~28-
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2n is the space under consideration. We only have to prove this

where R
for an exponential path y(t) = exp(tJS). By definition of the index we
have j(y) = m#2L, for some integer L € Z, where m 1is the number of
purely imaginary eigenvalue pairs of JS. Moreover, if 2 1is the number
of hyperbolic planes of JS, then by definition of the fixed point degree

JS, g = (_1)1. But 2n = 2m + 22 + 4k, where k 1is the number of

of e
complex eigenvalue groups of JS, hence 2 = n-m-2k and the equality

(1.14) follows.

1.7 Interpretation of the index as an intersection number

The integer j(v), vy € P, can be related to the number of oriented in-

tersections of a curve of Lagrange pianes with a fixed Légrange plane,

If w denotes the symplectic structure in RZ" given by the matrix J,
2 R2n

we can introduce the symplectic structure w; in R" x by setting

wy =w (~w). Amap M€ JC(RZ") is then symplectic if the 2-form wy
vanishes on the (2n)-dimensional subspace graph (M): = {(x,Mx)[x € RZ"},
that is, if graph (M) 1is a Lagrange subspace. Hence an arc X(t)e€Sp(n;R)
gives rise to an arc graph (X(t)) in the space of Lagrange planes. The

diagonal A = {(x,x){x € R2N

} 1is a Lagrange plane, and for any

M e Sp(n,R) we have graph (M) N a = {0} if and only if 1 1is an eigen-
value of M, We now relate the integer j(y), vy € P, to the number of
intersections of graph(y(t)) with 4, 0 <t <o. Let y be the special
exponential arc y(t) = exp(tJAs) defined previously. Then one verifies

easily that

(1.15) J0) = m 4 (1= deg(y(1))) =+ T din(graph v(t) N 3),

0 <t <

-29-
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where the signs = correspond to s 2 0, i.e. they correspond to the

orientation of the rotation in the distinguished elliptic plane which

gives rise to a nontrivial intersection. The right hand side is under-
stood to be zero in case s = o, We remark that dim{graph v(t) N a)
for some o0 < r <1 is the dimension of the solution space of the perio-
dic boundary value problem X = JA(t)x, x(o) = x(x), where JA(t): =

= ;(t)-y(t)'l; in fact y(t) is the fundamental solution of this
equation. As the left hand side of (1.15) depends only on the component
of P, we can use formila (1.15) in order to associate to every element
of a component of P a normalized oriented intersection number even if
the intersections of the particular arc chosen are not "transversal”. As

for the intersection theory for curves of Lagrange spaces we refer to

i e

J. Duistermaats paper (18] "On the Morse Index in Variational Calculus”,

Py

in which also the relation to the Maslov-index of a periodic solution is

described. As for the latter index we refer to V. Arnol'd [19].

SOV

2. Periodic solutions of Hamiltonian equations.

)

a

In this section we shall prove theorem 2 of the introduction which

guarantees T-periodic solutions of the equation

Aok 2

(2.1) x = Jh' (t,x), x(0) = x(T)

Aadod

where h(t+T,x) = h(t,x), and h € C2(R x R%"), n > 2. We shall first re-
formulate the problem (2.1) as an abstract variational problem for a

functional in the loop space.

-30-
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2.1 The variational problem

Let H be the real Hilbertspace H = Lz(o,T; Rzn). Define in H the

2ny:

u(o) = u(T)} and Au : = -Jﬁ, u € dom(A), The continuous operator F: M ~H

linear operater A : dom(A) € H - H by setting dom(A) = {u € Hl(o,T;R

is defined by F(u) (t): = h'(t,u(t)), u € H. Its potential o(u) is

given by
T
¢(u): = 7 h(t,u(t)) dt.
0

F 1s the gradient of ¢, that is ¢'(u) = F(u). Writing the equation
(2.1) in the form -Ji = h'(t,x) one sees that every solution u € dom(A)

of the equation
(2.2) Au = F(u)

defines (by T-periodic continuation) a classical T-periodic solution of
(2.1). Conversely, every T-periodic solution of (2.1) defines (by restric-
tion) a solution u of the equation (2.2). The equation (2.2) is the

Euler equation of the variational problem extr {f(u) { u € dom(A)}, where
(2.3) f(u) = % < Au,u > - o(u),

which in classical notation is simply given by (2) of the introduction,
with periodic boundary conditions x(o) = x(T). Hence in order to find <he
required solutions of the equation (2.2) we can just as well look for

critical points of f. We first summarize some information about the

operator A :
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Llenma 2.1,
The operator A 48 seliadjoint, A = A%, It has clesed wange and 2 com-
pact nesolvent. The spectwum 0§ A,s(A), 45 a pute point spectwm and

o(A) = tZ, © = 27’ . Every eigenvalue A € o(A) has multiplicity 2n

and the eigenspace E(A) = ker(\-A) s spaaned by &ne orthogonal basis
given by the following Loops:

tad

t+e e, = (cos At) e + (sin M:)Jek R

k=1,2,...,2n; whene fe, | 1<k <2n} is the standard basis in R2".

In particikar ker(A) = RO

, that 48 consists o4 the consdtant Loops.

The proof is easy, see [2] . If b = b(t) is a symmetric matrix
b(t)e L (RZ") and if b depends continuously and periodically on t
with period T > 0, i.e. b(t) = b(t+T), we define the selfadjoint opera-
tor Be L(H) by

(2.4) (Bu) (t) = b(t)-u(t), u€H.

Lemma 2.2,

(1) The operator A-B defined on dom(A) 48 selfadjoint and has compact
resolvent. Thus it has a pure point spectwum o(A-B) = ap(A-B).

(i11) 0 € o(A-B) 4§ and only {§ 1 48 a Floquetmultiplier fon the Linear
Hamiltonian system X = Jb(t)x.

(§11) 14 b(t) = b does not depend on t, then the operator B cemmules
with the profections P: = ? dEA fon every o > 0, where (E\) L8 the

-Q
spectal nesolution of A.
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Prooq: (i): Standard arguments (see [2]) and Lemma 2.1 imply that A-3
is selfadjoint and has compact resolvent, since A has compact resol-
vent, (1i): o € o(A-B) 1if the equation (A-B)u = 0 has a nontrivial
solution u € dom(A), that is u € Hl(o,T; R%") and u(o) = u(T).
Since u satisfies the equation ﬁ = Jb(t)u, this is the case if and
only if 1 is a Floquet multiplier of the above equation, as is well

known from Floquet theory, As for (iii) we refer to ([2], Lemma 12.3). e

2.2. Reduction to a finite dimensional variational problem

We shall assume from now on the Hessian of h to be bounded:
(2.5) -8 <h"(t,x) <8

for all (t,x) € R x RZ" and for some B8 > o. From (2.5) we conclude by

the mean value theorem, that the potential operator F satisfies
2 2
(2.6) - 8 |u=v|® < < F(u)-F(v), u~v > < 8 |u-v] ,

for every u,v € H, As observed in (1], see also (2], this estimate
allows to reduce the problem on finding critical points of f to the
problem of finding critical points of a function a = a(z) defined on

the finite dimensional space Z: = PH C H, where

. 8
= f dE
-B A

is the projection onto the eigenspace of A belonging to the eigenvalues

=33~
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in (-8,8), E, being the spectral resolution of A. We assume 3 & o(A)

A
and have the freedom to pick 8 > 0 as large as we need. We summarize
this reduction to a finite dimensional variational problem in the

following

Lenma 2. 3.

There are a junction a € CZ(Z,R) and an infjective Cl-map u: Z-+H

having its range in the domain of the operatcr A,u(Z) € dom(A), and

with im(u'(z)) € dom(A) 4on every z € Z, with the §ollowing propet-

Lies:

(i) 2€ 7 4is a cnitical point of the function a, i.e. a'(z) = 0, 4§ and
only {f u(z) 48 a solution of the equation Au = F(u), <.e. a T-
periodic solution of the Hamiltonian equation (2.1). 14 u 48 a so-
Lution 0§ Au = F(u), then u = u(z) 4or a cnitical point z o4 a,

(1) u has the form u(z) = z + v(z) with Pv(z) = 0.

(111) The function a 4s given by a(z) = f(u(z)) = 7 < Mu(2), u(z) > -

- o(u(z)), its derivative a' 48 globally Lipschitz continuous and

a'(z) = Az - PF(u(z)) = Au(z) - F(u(z))
a"(z) = (A - F'(u(z))) * u'(z) = A|Z - PF'(u(z))-u'(z).

(iv) 1§ F 48 Linearn, F(u) = Bu, and {f Bu = bu, b a time independent
symmetric matriix, then a(z) = (A-B)z (Here BP = PB {8 used].

(v) 1§ & 4is a topological space, and {§ F: L xH - H 48 a continuous
map, Such that, fon every o € §, the function F(o,-): H+H 4 a
continuous potential operatorn satisiying the estimate (2.6) with ine

constant independent of o, then the comresponding u = u{o,z) 4L$ con-

Loinuous .
-34-
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Prcod: The prcof of this crucial Lemma is contained in ([2], Lemma 12.2,

Lemma 3.1, Prososition 4.5 and Remark 2.2.). e

In view of this Lemma, the required periodic solutions of (2.1)
are in one to one correspondence to the critical points of this function
a, which is defined on the finite dimensional space Z. It remains to

determine the critical points of a.

2.3 Morse theory for the reduced problem

In order to find the critical points of a we shall apply the

Morse theory discribed in section 3 below to the gradient flow defined

by
(2.7) z = a‘(z) ,

which, according to Lemma 2.3 (ii) does exist. We shall first show, that
the set S of bounded solutions of (2.7) is compact, provided the

assumptions of theorem 1 in the introduction are met. We therefore shall
assume, in addition to (2.5), that our Hamiltonian vectorfield is asymp-

totically linear, requiring that
(2.8) Jh'(t,x) = JA_(t)x + o{|x]), (X! + =

unifrmly in t, where A _(t+T) = A _(t) is a continuous loop of symmetric

matrices.
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Lemma 2.4,

Assume (2.8), and assume the Lincar Hamiltonian equation x = JA_(t)x
Lo be nondegenemata. Denote <ts <adex by J_. Then Lne set S o3
bounded solutions og (2.7) is compact, nence nas ar <index, widich L8 the

m
homotopy type 04 a pointed sphere S ° 04 dimension m_ :

.mm 1
h(s) =(S ™1, m =zdimZ-j .

Therefore p(t,h(S)) = tm° . | |

Proo4:

By theorem 1 in the introduction there exists a continuous family Bo(t),
0 <o <1l of Toops Ba(t+T) = Ba(t) having the properties that 1 is not
a Floquet multiplier of x = JB (t)x for all o0 <o <1, and that for
o=1, Bl(t) = A (t) and that for ¢ = o, Bo(t) = Ao
having the index j_ = j(Ao) as defined in the introduction. Define the

is a constant loop
continuous family Fa of potential operators

(2.9) Fa(u) =Bu+ a(F(u) - A u),

0<oc<l1 and' u € H. It has the properties that for~ gas=1l, Fl(u) = F(u),
and for o = o, Fo(u) = Aou. Moreover Fc satisfies the estimate (2.6)
for some B8 > o which is independent of o and therefure gives rise by

Lemma 2.3 (v) to a continuous family of gradient systems.

(2.10) z = a!(2), z€ 1.

...................
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‘Nith u = u(c,2) we have by Lemma 2.3 (iii) and by (2.9):
(2.11) a;(z) = Ay - Fc(u) = (A-Bo)u-c(F(u) - A_(u)).

We shall prove, that there are constants v >0 and & > 0 independent

of o, such that for all z€ Z

(2.12) laj(2)| 2% l2] -6 .

First observe that by Lemma 2.2 (i) and (ii) o ¢ o(A-BU), and, since
g+ Ba € JC(H) is continuous and the resolvent of (A-Ba) is compact,

there is a constant v > o independent of o, such that (A-Bq)'lez(H)
and l(A—Ba)'ll :_v-l '

, hence fcr every u € dom(A)
(2.13) l(A—Ba)ul > vlu], 0<agc<l,

On the other hand, from (2.8), we conclude, that

(2.14) tm L |F(u) - Al = o.
ul + e Ju

1

Since by Lemma 2.3 (i1), lu(a,z)l2 = Iz{2 + |v(a,z)!2, hence iu(o,z); > {zi,

the claimed estimate (2.12) follows from (2.11) together with the estimates
(2.13) and (2.14),

Let Sa denote the set of bounded solutions of the equation
(2.10), that is So = (2€Z | there is a bbunded orbit containing z}.
Then the estimate (2.12) implies the existence of a compact set KC Z
containing S 1in its interior for all o0 <o < 1. Thus K 1is an isolating

neighborhood for So, o € [0,1], which are therefore related by continuation




7
--------------------------------------

(4] section IV.I Theorem 3.1). Thus by the invariance of the homotopy
index ([ 4] section IV.I Theorem 1.4), the homotopy index of 5, fis in-
dependent of ¢ € [0,1], i.e. h(Sa) = h(S). For o = 0, the vectorfield

a; is, in view of Lemma 2.3 (iv), given by
(2.15) .aa(z) = (A-Ao) z.

Since by assumption o ¢ c(A-Ao), it follows that for o = 0, the isolated
invariant set So of (2.15) consists just of the hyperbolic rest point

2 = 0, hence S° = {0}, It‘is shown in section 3 that the homotopy index
of a hyperbolic rest point is the homotopy type of a pointed shere ém
whose dimension, m, equals the dimension of the stable invariant manifoid
of the rest point. Hence it remains to compute the dimension m of a
maximal subspace Z,_ of Z such that (A-Ao)lZ+ > 0, Here it is impor-
tant to recall, that A° is the bounded linear operator, which is defined
as in (2.4) by a symmetric matrix, also denoted by Ao' which moreover
does not depend on t. For this special case the dimension m = dim Z+

has been computet in ([3], Lemma 1). In fact, denoting by j(Ao) the
integer introduced in section 1, it is proved in that paper that

m= g dimZ - j(A). Since J_ = 3(A,), the Lenma is proved. e

We next consider a special periodic solution of (2.1), namely an

equilibrium point x_ of the Hamiltonian vectorfield, which we assume to

()
be the origin, such that Jh'(t,0) = o for all te€R.
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Lemtma 2.5.

Addume 0 48 an equilibrium po.int 04 the Hamiltcwian equaticn, and asswne
the tuivial perdodic s0lution, xo(t) =0, tE€R o be nondegencrzte and

denote Lts index by J o€ Z. Then the cowesponding eritical po.int

Z, =0 € 7 48 an {solated invariant set, whose index 48 given by:
My 1 .
h({z,}) =[S 71, my = 5 dim Z - j, .

Theredore p(t,h{z,})= tm°.

Prood: Since o is an equilibrium point, Jh'(t,x) = JAo(t)x + o(ix])

as |x| + o0, with Ao(t) = h"(t,0). By assumption Xo(t) = 0 is nondege-
nerate and therefore by Theorem 1 there is a deformation Ba(t) = Bc(t+T)
connecting the loop Ao(t) = Bl(t) for o =1 with a constant loop
Bo(t) = A1 for which the index is given by J(Al) = jo. By definition,

1 is not a Floquet multiplier for the linear systems X = JBc(t)x,

o € {0,1). Define the family F, of potential operators as
F (u) = B u + a(F(u) - Aju) ,

then Fy(u) = F(u) and F(u) = Aju, vhere the operator B_,A;,A, €l (H)
are defined as in (2.4) by means of the corresponding matrices. Fc satis-
fies the estimate (2.6) for o € [0,1) with a constant B independent of

g and, by Lemma 2.3, gives rise to a family ac', of gradient systems on

Z with a corresponding family u{o,z), such that a;(o) =0 and u(s,0)=0
for o €(o0,1]. Explicitely we have with u = u(0,2): a;(z) = (A-Bu)u-
o(F(u) A4 ). As in the proof of the previous Lemma there is a v > 0, such
that for o € [0,1] we have the estimate I(A-Bo)ul > vluj, for u € dom(A).

Moreover, since F(o) =0 and F'(o) = Aj € £L(H) we have F(u) - Aju=

=39-~
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o(,u.) as lui =0 in H. With ju(c,z)! > ;2{ we conciude that there
is an € > o independent of g, such that if |zj < ¢ then
la}(2)! 3_%-52!. Hence z = o is an isolated critical point for every

o € [0,11 and therefore an isolated invariant set of the corresponding

LR T R O N

gradient flow. As in the proof of the previous Lemma we conclude that the
index of this isolated invariant set does not depend on ¢ € [0,1] and

so is the index of the critical point of aé(z) for o = 0, which by

LAY A BA Seal

Lemma 2.3 (iv) is given by aj(z) = (A-A;)z. Sinte o ¢ o(A-A;) the

A

critical point z = 0 is hyperbolic and hence the index is the homotopy ]
type of a pointed sphere of dimension Mmys which as in the previous Lemma !
is computed to be equal to %-dim Z - jg» with jo = J(Aj). This finishes ]

the proof of the Lemma. e : |

We shall use this Lemma in order to establish a relation between ]
. the index of a nondegenerate periodic solution of the equation (2.1) and

the index of the corresponding critical point of the gradient flow on

PR R ——

the loopspace.

Lerma 2.6.

Let x,(t) be a nondegenerate T-periodic sofution of the Hamiltonian
 cquation (2.1) with index J. Then the conesponding critical point, 2, i

0§ the functional a on the Loopspace 7 48 an isolated {invarsiant sel

with index given by

.M 1
h({Zo}) =[S]. m= z-dim Z-].

There4ore p(t,h({zo})) = 7, Moreover, the signature c{ the Hess<an of h

A R St e I ) .
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2, 48 equal 2o 2j. The 2ocal degree ¢f a' 4n a nedlzhtotheod

& equal to (=1)™J,

Let z, be the critical point of a corresponding to the given periodic
solution xo(t), such that u(zo)(t) = xo(t), and set Uy = u(zo). By
Lemma 2.3 (iii) we find a“(zo) = (A-F'(uo)) u'(zo). where F'(uo) e L,(H)
{s defined by the matrix h“(t,xo(t)). By the nondegeneracy of the
periodic solution we have by Lemma 2.2 (ii) the estimate i(A-F'(uo))ulg_
>v |ul for u € dom(A). Moreover, since u(z) = z + v(z) with Pv(z)=0
we conclude, that [u‘(zo)él2 = [gl?+ Iv'(zo)cl2 3_[;12 for every

(]
is an isolated critical point. To compute its index, we shall reduce the

t € Z and therefore [a"(z,)c| > v[g| for every ¢ € Z. Therefore :z

problem to the situation of the previous Lerma and define the following

family of potential operators satisfying (2.6):
(2.16) F;(u) = F(u + °"o) - aF(uo), ¢ € (0,1].

Clearly Fo(u) = F(u) and Fl(u) = F(u + uo) - F(uo) and so Fl(o) =0

and F'(0) = F'(uo). Put Vi (l-c)uo, we claim
(2.17) Ava = Fc(va).

In fact, since Yo

therefore Av_ = (l-a)Aua 2 (l-0) F(uo). On the other hand

is a periodic solution, we know Auo = F(uo) and

Fa(vo) = F(vo + ouo) - oF(uo) = F(uo) - oF(uo) and hence the claim follows.

Denote by 3, and Uy the family of functionals and maps belonging to
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(2.16). By Lemma 2.3 there is to every v in (2.17) a unique critical

point z of a such that

Vg = u(o, zc) .

The critical points z, are isolated. In fact, since F;(vo) = F'(uo)

we have for the Hessian of a, at z:
" = - 1 .
al(z,) = (A-F'(u)) « u!(z,)

and therefore we have for o € [0o,1] the estimate {a;(za)c] > v[g[ for
all g€ and for some v > 0 independent of o, Hence the isolated
invariant sets So = {za} of a; are related by continuation and there-
fore h(Sd) is independent of o and hence is equal to the index of the
critical point z; =0 of the flow ¢ = 1, This flow is defined by ai(z)
belonging to the problem Au = G(u), where g(u) = F(u + uo) - F(uo).

Since G(o) =0 and G'(0) = F'(uo) the problem is reduced to the proof
of the previous Lemma, where this time Ao(t) is replaced by h“(t,xo(t)),
xo(t) being the periodic solution. The first statement now follows by a
further deformation of the gradient ai to the linear system (A-Al) (2)
for some constant loop A1 with j(Al) = j. To prove the second part of
Lemma we simply observe that by definition of the space Z and by Lemma
2.1, dim Z = 2n + 42 for some positive integer £. Hence for some open
neighborhood U of z,

= (-1)"+J, as claimed. o

we have deg(U,a'(z),0) = signum(det a“(zo)) =

-42-
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Proof o4 theorem 2.

Set d ='% dim Z, d is an integer. Let S be the set of bounded orbits
of the grédient flow z = va(z). It consists of critical points of a
and of connections between them. The critical points corresponds by
Lemma 2.3 in a one to one way to the periodic solutions of the

Hamiltonian equations (2.1) we are looking for.

By Lemma 2.4 the invariant set S < Z s compact and of
homotopy type h(S) = [§m°] with m_=d - j_. This is not the index of
the empty set which is a pointed one point space hence has the homotopy
type [({p},p)] for an arbitrary point p. Therefore S # ¢ and be-
cause the Timit set of a bounded orbit of a gradients system consists
of critical points, the function a possesses at least one critical
point and consequently the Hamiltonian equation admists at least one

T-perioqic solution.

Remark: As a sideremark we observe that the existence of one critical

point could also be established by a degree argument. In fact, it ;o]1ews
n+

from Lemma 2.4 for a large ball @ C Z, that deg(f,a',0) = (1) " =

m
= (-1) " ¢ o.

If the periodic orbit found above is nondegenerate, it has by
Theorem 1 an index denoted by j € Z, The corresponding critical point
z of a {s then, by Lemma 2.6, an isolated invariant set with index
h({z}) = [ém], where m=d - j. Assume 2z 1is the only critical point
of a, then S = {2}, since we are dealing with a gradient system and

. . o mg
therefore h(S) = [S™ which, on the other hand is equal to [S ] and

-43~
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consequently m = m_. Therefore if j # j_ and hence m # m_ there must

be more than one critical point of a .

Assume now that the Hamiltonian system possesses two nondegene-
rate periodic orbits having indices jl and jz. We claim that there is
at least a third periodic orbit. In fact, if this is not the case, then
the isolated invariant set S contains precisely two isolated critical
points 2z, and z, with indices h({zl}) = [émll. m = d - j1 and
h({zz}) = lémzl, m, = d - jz. If we label them such that a(zl) < a(zz),
then (zl.zz) is an admissible Morse-decomposition of S. From theorem
3.3 we conclude the identity p(t,h({z;})) + p(t,h({z,})) = p(t,h(s)) +
+ (1+t) Q(t), which, by Lemma 2.6, leads to the identity

m m m
tlatlat ™4 (l4t) QL).

Setting t =1 we find the equation 2 = 1 + 20(1) with a non-
negative integer Q(1). This is nonsense, hence we must have at least

three critical points of a.

Assume finally all the periodic solutions to be nondegenerate
and denote their indes by jk' k =1,2,... They correspond to the critical
points of a, which are isolated. Since S is compact there are only |
finitely many of them, say (zl.....zn). We order them such that
a(zi) < a(zJ) if 1 <Jj. Then (zl,....zn) is an admissible ordering of

a Morse decomposition of S, and by Theorem 3.3 and Lemma 2.4 we have

n m,
iy P(t.h(z,)) = t = + (1+t) Q(t),
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with m_=d - j . By assumption the periodic solutions are nondegenerate,
m

hence by Lemma 2.6 we know p(t,h(zk)) =t k, m, = d - jk’ so that

n m m,

IotT=t o+ (14t) Q(t),

k=1
which after multiplication by t'd, d= % dim Z becomes the advertized
identity in Theorem 2. We conclude that there is at least one periodic
solution having index j_. Also, setting t =1 we find n=1+2 Q(t),
hence the number of periodic solutions is odd as claimed in Theorem 2.

This finishes the proof of Theorem 2.

As an illustration, we assume there are precicely 3 nondegenerate

periodic solutions with indices j,, 1 <k < 3. Then, by (2.19).

W om, Mg M .
t +tc+t =t + (1+t) Q(t), hence Q(t) = 1 and therefore

Qt) = t* for some integer 2. We conclude that one of the jkfs agrees
with j_, say J5 = J_. The remaining indices are therefore bound to
satisfy ljl-jzl = 1. It would be interesting to have an example of a

Hamiltonian system realizing this rather special situation.
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3. Morse theoryv for flows.

3.1. Set up, Morse decompositions, isolated invariant sets.

Let r be a topological space. A flow on T is a continuous mep frem
xR onto I, (y,t) »y-t satisfying for all y € r and ali

s,t € R the two conditions y.0 =y and (y-s)-t = y.(s+t). For two
subsets I'Cr and R'CR weset I'.R' ={y-ter | ye f‘ and

[. If

t€R'}. Asubset I €T 1is then called invariant, if iR

NCr is a subset we denote the invariant set contained in N by

I(N):

(3.1) I(N) : ={y€N|yRCN}.

Clearly I(N) is invariant, it is closed if N is closed. For a sub-

set YC T we define its w~1imit sets by
(3.2) o(Y) = I(cl (Y[o,=)}) and w*(Y) = I(cl {Y:(-=,0]}).

It follows from the definitions, that if [ is a closed and
invariant subset of r, and if Y C I, then w(Y) and m*(f) are
closed and invariant subsets contained in I. If, in addition, I is
compact and Hausdorff relative to I and if Y is connected, then

w(Y) 1is connected too.
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Dedinition (3.1) (Morse decomposition)

Assume I 1is a compact, Hausdorff, invariant set in Tr. A Morse de-
composition of I is a finite collection {M“}Tr e p of subsets

M“ C I, which are disjoint, compact and invariant, and which can be
ordered (MI’MZ""'Mn) so that for every y € 1\ v M. there

l1<js<n J
are indices i < j such that

w(y) € M'i and w*(y) € Mj .

Such an ordering will then be called an admissible ordering. There may

be several admissible orderings of the same decomposition. The elements

Mj of a Morse decomposition of 1 will be called Morse sets of 1.
For an admissible ordering (Ml""’Mn) of a Morse decomposi-

tion of I we define the subsets Mji CI as follows:

(3.3) Migt = (Y€1 [ uly) and wH(y) CM; UM, V..U MY.

In particular ij = Mj. The following statement then follows immedia-

tely from the definitions.

Proposition 3.1.

Assume (Ml""'Mn) 48 an admissible onderning of a Mornse decompositicn
of 11§ 1<, then My ooy My )y Mysu My e s M)

48 an admissible ondering of a Morse decompesition o4 1.

Moreoven, (Mi’Mi+1’°"’Mj-1’Mj) L8 an admissible ordering 04 a Mowse

decompesition 9§ Mji‘ .
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In the classical Morse theory the topological space -~ =M is
a manifold and the flow under consideration is the gradient flow of a
function defined on M, which is assumed to have finitely many critical
points. These critical points serve as the sets of a Morse decomposi-
tion of the invariant set I = M which in this case is the whole mani-
fold. The statement of Morse theory then relates the dimensions of the
unstable invariant manifolds of these critical points to algebraic in-
variants of the whole manifold. In our more general setting, the in-
variant set I is just a subset of I , and the flow is not necessari-
ly a gradient flow. The aim is to relate a]gebraic'invariants of the
Morse sets of a Morse-decomposition of I to algebraic invariants of
all of . The invariants will depend on the behavior of the flow in a
neighborhood of I. In order to be flexible in the applications we shall

introduce the notion of a local flow.

Deginition (3.2). (Local gLow)

Assume X Cr 1is a locally compact and Hausdorff subset of r. For

simplicity assume X to be a metric space. X 1is called a local flow,
if for every y € X there are a neighborhood UC T of vy and an

¢ > 0 such that

(XﬁU) ’IO.E)CX .

To illustrate the purpose of this notion in the applications we

2n

mention some examples: 1. Consider on T = R the flow of a time in-
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dependent Hamiltonian vectorfield given by a function h. Then n is

an integral of the flow. If the invariant set [ is contained in the

set (x € RO

| h(x) = c}, this energy surface is a local flow con-
taining [. 2. We point out that there are many ways meeting local flows
if one studies »nartial differential equations, which:.are not defined on
locally compact spaces ab initio. To be more precisé ve describe in the
Appendix a system of parabolic equations, which leads in a natural way

to a local flow.

Definition 3.3. (lsolated invariant set)

let NCX bea compact subset of a local flow X. If
I(N) € int N (relative to X)

then N 1is called an {solating neighborhood (in X) and I(N) is
called an isolated invariant set. (Note that the interior of N may

be emp;y).

Proposition 3.2.
Assume S 1o be an i{solated invariant set in the Local 4{Low X and
Lot M1} o »p be a Morse decomposition of S. Then the sets M are

also {solated invariant sets in X.

Proo4: By assumption there is a compact NO S with I(N) =S CintN
(relative to X). Pick any compact X-neighborhood N of a set M_
which is disjoint from the remaining Morse sets and contained in N.

This set N is an isolating neighborhood of M . let vE€ I(N_), so

latal s alalata a

C . S Lo 4
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that y-RC N“ hence y-R C N and consequently y € S: Since both
w(y) and w*(y) are contained in N_ they cannot be in any other
Morse set other than Mn. From the definition of a Morse de;omposition
it now follows that y € M_ and thus I(N“) =M Cint N relative

to X. o

2. Index pairs for Morse decompositions

If 2 cYc I are subsets, we call Z positively invariant relative to
Y, if ye€Z and y-[o,t] €Y together imply that y:o0,t] C Z. Under
a compact pair (ZZ’ZI) we mean an ordered pair of compact spaces with

Zl c 22’ The following concept is crucial.

Dedinition 3.4. (Index Pain)

Let S be an isolated invariant set in the local flow X. A compact

pair (Nl’No) in X is called an index pair for S, if

(1) c1(N1 \ N,) is an isolating neighborhood for S.
(11) N, is positively invariant relative to Ny
(i11) if y €N, and y-R" ¢ N, then there is a t > 0 such

that vy+o,t] C Nl and y.t € NO .

Observe that positive orbits can leave N; only through the
"face" No' We illustrate this concept by an example. We consider
r=Xs= R2 and the flow defined by ; = X, & = -y. The set S = (o} is

an isolated invariant set.

..50.-
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Any closed square Q = N1 centered at o with No being the closed

faces left and right can be taken as index pair (Nl,N

S.

o) for the se*
The algebraic invariants for an isolated invariant set S re-
ferred to in the previous section will actually be invariants of an in-
dex pair for S. It will turn out however that these invariants do not
depend on the particular choice of an index pair for S. In this sence
they will depend only on the way S sits in the local flow X. The
first step is to construct an index pair fcr an isolated invariant set,

which is done in the next theorem.

Theorem 3.1. (Existence 04 a §iltration 04 index pairs)

Let S be an isolated {invariant set und Let (Ml""’Mn) be an ad-
missible onderning 04 a Monse decomposition of S. Then there exisis an

increasing sequence 04 compact sets

(3.4) NgC Ny C.n CN

duch that for any i < j, the pair (Nj’Ni-l) 48 an index padlr don Mji’
In particubar (N .Nj) 48 an index pair fer S, and (Nj'Nj-:) L8 an
Andexpair fon Mj. Moreover, given any {sofating neighbcthood N o4 S

and given any neighbothoed U 04 S, then tae sets Nj can be chesen
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g% 80 that cl(Nn \ No) C U and sucn that the sets Nj are pesditively
"
= invariant relative Lo N.

L‘ The rest of this paragraph is devoted to the proof of this
§ theorem (Lemma 3.1. - Lemma 3.4.). We first choose any isolating neigh-

borhood N of S, hence I(N) =S, and define for j = 1,2,...,n the

XXy

following subsets of N, which stay in N 1in forward respectively

ﬁ backward time: '
ii + +
s I;={yeN| y-RRCN and m(Y)CMjU...UM}
\ (3.5) ! ] "
s IT={yeN|yR CN and w*(y)C M, U ... UM.]}.
™ J 1 J
ﬁ . + - + -
- We claim that Ii N Ij = Mji’ In fact, if y € Ii N Ij, then y-RCN
EE and hence y € S. Furthermore w(y) € Mi v.,..V Mn and.
. w*(y) € Mpu...u Mj, and the claim follows from the definition of a
: Morse decomposition.
N
% Lemma 3.1. The &ets I; are compact
Y Prood: a) The sets II and In are compact: Observe II = {y€N |
L

y-R+ C N}. Therefore if y ¢ II then y-t*¢ N for some t* > o. By
5f the compactnes of N and by the continuity of the flow, there exists
b2y
@3 an open neighborhood UC T of y such that U-t* N N = ¢. Conse-
2
- quently if y€ UNN then y ¢ I; and N\ II is open relative to
E N and hence II is compact. The proof that I; is compact is similar.
i b) The special case n = 2: Let (M;,M,) be an admissible
f ordering of a Morse decomposition of S. By definition I; c I; and by
2
$ -52~-
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a) the set II is compact; it remains to show that I; is closed. Let
y = lim Ypo Yq € I;. then y € II, hence w(y) < M1 v MZ and we have
to 2h§§° w(y) € MZ' Assume by contradiction w(y) C Ml' Since MI,M2
are disjoint and compact we can choose open neighborhoods U1 and U2
of M1 and M2 with cl(Ul) a cl(UZ) = g, Since w(Yn) c M2 and
w(y) € Ml there exists a sequence tﬁ such that Yn'[tﬁ") cU, and
there exists a sequence t; such that yn-t; € Ul' Therefore we find
a sequence t; such that y [t ,=) CN\U; ahd Tty € N\ (UVU,).
Take a subsequence such that y* = 1im (yn-tn) exists, then
Y* ¢ "1 v Mz and y¥o,=) C N\ U: *;;d therefore w(y*) C MZ' If the
sequence (t ) is bounded, then y* € y-R hence w(y) = u(y®) € My
contradicting w(y) € "1‘ If the sequence (tn) is unbounded then
given any t > o, y*:[-t,0] 1is a 1imit of segments Yo'ty [ =t,0]
= yplt,-t, t]. For n large these segments are contained in
vo'R" © N and it follows that y*-[-t,0) C N. Since this holds true
for every t > o, the set y*.R~ and hence y*-R 1is contained in N
and therefore y* € S. Since (MI’MZ) is an admissible ordering of a
Morse decomposition of S we conclude from w(y*) C M, that Y* € M,
contradicting y* ¢ M, UM,

¢) The general case: We observe that if j > }, then I; is
T,

—+ _
2 where I2 corresponds to the Morse set Mé = Mnj

of the two decomposition (Mi = “(5-1)1-“é = Mnj) of S. A similar re-

simply the set
mark applies to 13_1 for j < n, hence the Lemma follows from b). e

For a subset ZC N we define the set Z C P(Z) C N as the

“swept out set" of Z by the flow in positive time as follows:

-53-
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(3.7) P(Z) : = {y € N | there exist y' € Z and t' >0 such
that y'[o,t'] CN and vy'-t' = v}

The set P(Z) 1is positively invariant relative to N.

Lerma 3.2, Llet V be any T-nedighborhood o4 13. Then there is a compact
N-neighborhood Z o4 13 such that P(Z) 48 compact and P(Z) C V.

Proog: Since 13 and I}+1 are disjoint and (by Lemma 3.1.) compact
we can pick open X-neighborhoods V' of I}+1 and V~ of 13 such
that V eV and cl(V) n cl(V7) = 4. We first claim, that there is a
t* > 0 with the property, that for every y € N\ V_ the arc

y-[-f*,o] contains a point in vt orin \ N:
(%) if y€N\V then y.[-t*,o] # N\ V',

In fact, if Y€ N\ V" and y:R™ ¢ N there is a t = t(y) such that

‘yo(=t) € N. If y-RTC N, it follows from y ¢ 13 that
+

j+l
ve(-t) € V+. In either case there is a neighborhood W of <y such that

w*(y) € Mj+1 V..UM I, € V¥, and there isa t = t(y) so that
W-t(y) 1is contained in the complement of (N \ V+). The claim now
follows since N \ V_ is compact. In order to define Z let y € 13,
then yR" C 13 C V™ and we can pick a compact neighborhood C, of v
such that CYe[-t*.o] C V™, Since by Lemma 3.1. the set 13 is compact,

a finite collection of such CY's cover 13. and we let Z be their

unfon. Z 1is a compact neighborhood of 13 and we claim that P(Z) € V.

Assume not, then there is a y € P(Z) with y & V. By definition of

54~
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P(Z): vy = y'-¢t' for some y' €Z and some t' >0 and

v'{o,t'] CN. Pick t such that y'[o,t) € V" and y*:= y'-t € N\ V.

_Then y*«[-v,0) €V  and y*(-t) = y' € Z. By definition of Z,

y'-[~t*,0] €V ,hence y* -(t%z),0] € c1(V') € N\ V¥ in contradiction to
(%), hence P(Z) € V. It remains to show that P(Z) is ccmpact. We
shall show that the complement of P(Z) in N is open and assume

vy € P(Z). Then w*(y) ¢ Mpu...u Mj and therefore there exists a

t = t(y) such that vy(-t) ¢ N\ V'. Let t, = sup (t > oly:(-t, ol

C N\ V'}, then ye[-t;,0] €N\ V" since N\ V' is closed. Moreover
y{-t;,0] NZ =¢ since y ¢ P(Z). Because Z is compact there is a
t, > t; such that y-[-t,,0l NZ x¢ and y(-t)) & N\ v, By the
continuity of the flow and by the compactnes of N\VF there is a neigh-
borhood W of y such that W-[-t,,0l NZ = ¢ and W-(=ty) 0 (N\V*)
= ¢, Since P(Z) € V', we conclude, that if y' € W then there is no
orbit segment from Z to y' which is contained in N\ V+, hence

v' £ P(Z) and the complement of P(Z) in N is open, hence P(Z)

compact. This finishes the proof of Lemma 2. e

The construction of Lemma 3.2 is schematically illustrated by the

following Figure:
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We next construct the index pair (Nn,No) for S = I(N). We know

1] N I = S Cint (N). Therefore, since by Lemma 3.1 thé sets Iy and I~

+

are compact, we can choose open neighborhoods U of I; in N and

U of I; in N such that c1(U+ NU)cUN int N, for a given

neighborhood U of S. Define:
(3.7) N, = PN\ UY).

Then, by definition, No is positively invariant relative to N. We
shall prove that N° is compact. Since N \ U+ is compact and disjoint
from II s {yeN|wly)cC MV... U Mn} there is a t* > 0 such that
vy €N\ U implies y-{0,t @ N. Let vy*=Tlim vy , v, €N,. By de-
finition, y = v! - t' with vy, €N\ U and :;-[o,tn] C N. There-
fore o<t <t* and since N\ U* s compact, there are a y € N\ U*
and t >0 such that v* = y.t with ye N\ U" and y-[o,t] CN.

Consequently y* € No' hence No is compact.

In order to define Nn we apply Lemma 3.2 and take a compact
neighborhood N} © U™ of the set I;, which is positively invariant
relative to N and set

(3.8) N, = Na v N° .

By construction Nn is positively invariant relative to N and

(Nn’No) is a compact pair.

Lenma 3.3. (N.,N)) 48 an index pair of S. Moreover cl(N. \ N ) < U.
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i Proo{: We verify conditions (i-iii) of definition 3.4. ad (i): S and
;ﬁ N, are compact and disjoint, hence N\ N, 1s a neighborhood of s,
’ also N, hence N 1is a neighborhood of S by construction, hence
i

f% Nn \ No is a neighborhood of S. Furthermore, since N \ vt c N° and
Y. . - A - .+

Ey Nn C U we conclude that Ny \ No CU nU and hence cI(Nn \ No)

c cl(U+ N U") € Un int N. In particular cI(N, \ N,) s an isolating

a¥a

neighborhood of S. ad(ii): If y € N, and vy-[o,t] C N, then

a7 Lt

v[{o,t)] €N and so vy-{o,t] C No’ since No is invariant relative tu

N. ad (iii): If ; € N, there is nothing to prove. Assume vy € N, \ N,

-

3 and y-R" € N, Put t* = sup (t >0 | y-{o,t] C N\ N}, then

R v-t* € c1(N, \ N,) € int N (relative to X). We now use the fact, that

:w X ii a local flow: since vy-t* € X, there is a r-neighborhood W of

;éE v-t* and an ¢ > o such that W N X-:[o,e) € X. Since y-t* € int N

53 (rel X) there is therefore an ¢ > 0 such that vy [t*, t* + ¢] C N. But
N, 1s positively invariant relative to N and hence vo[ t¥,t* + elCN .

Eé By definition of t* we conclude for a t in t* < t < t* + ¢ that

N vt € Ny Since y-[0,1] C N, the crucial third condition of the de-

’ finition of an index pair is verified. «

s

:

:? We finally construct the advertized filtration No c NIC..J:Nn.

Applying Lemma 3.2, the definitions (3.5) and (3.6) to N, © N instead

!

of N, we find for every 1 < j < n-1 a compact neighborhood N3 of

>

¥

13 such that

1) 13 < Ny C Ny

RS AR

2) Ny I3, =0
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3) N3 is positively invariant relative to Ny -

Recall that I3 N I§+1 = ¢, Now define iteratively:
(3.9) Ny e NjUN; s 12§ el

Schematically:

The following Lemma then finishes the proof of Theorem 3.1.
Lerma 3.4: (Nj’Ni-l)' i <J, 44 an dndex pair for LITE

Prood. ad (1): To show that cl(Nj \ Ni-l) is an isolating neignbor-
hood of Mji’ assume vy-R C-cl(Nj \N;_{). Then y€S and since
v ¢ Ij_; we conclude w*(y) €M, U ... UM. On the other hand

+
v¢ Ij+1 hence w(y) C MV...v Mj and therefore y € Mji by de-
. - +
finition of this set. Clearly Mji c Ij c Nj and Mji c I

I: N Nj_y =8 . Therefore Mji < Nj \ N;_; Proving our claim. ad (ii):

By construction, N‘._1 is positively invariant relative to Nn, also

and

NJ c Nn and therefore Ni-l is positively invariant relative to Nj.

ad (i11): Assume vy € N \N; ; and yR* ¢ N;. Then y-R" ¢ N, since

Nj is positively invariant relative to Nn' Therefore, by Lemma 3.3

..............
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there exists a t such that y-{o,t] < Nn and y°t € No' From vy € Nj, ;
we deduce v-[o,r] C Nj. Also, by construction, N, < N{_l. Summarizing :
we have shown: if y-R' ¢ N; there exists a t >0, such that ‘
vy{o,t] € Nj and y+t € Ni-l’ hence also the third condition of an

index pair is verified. o

Schematically:

el(Ng \ M)

POEE™

3.3. The Morse "Inequalities" for a fiitration.

The statement of the Morse inequalities for a filtration
N° = N1 c...¢C Nn of any compact spaces is an immediate consequence
of the axioms of elementary cohomology theory. If (Y,Z) is a compact
pair, we denote by H(Y,Z) the Eech-cohomology with coefficients in
some fixed ring. This particular cohomology is chosen because it is
defined for compact spaces and has the continuity property which does
not hold for singular cohomology, for example. (The continuity property
states: if X =N Xn then H(X) = lim H(Xn)). For the cohomology
theory we need we refer to E.H. Spanier [6] and [7]. If ADBOC are

compact spaces, then there is an exact sequence
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5 0
3 o - HO(A,B) ~ HO(A,C) + HO(8,C) &
! §° .1 ¢
E (3.10) -+ H°(A,B) -~ u! (A,C) - H (B C) -

.-'{ . 1

3 § W2(a.B) ~

Assuming the modules HP(X,Y) to be of finite rank we denote by
rP(X,Y) the rank of HP(X,Y) and with dP(A,B,C) we denote the rank

T Tt
IS urtited”

f of the 1image of sp . If (X,Y) 1is a compact pair and if ADBOC

are compact spaces we can define the following formal power series

AR

p(t.X,Y): = £ r(X,Y) t"
n>o
(3.11)

X q(t,A,B,C): =z d"(a,8,C) t"

n>o
& The coefficients of these formal series are nonnegative integers.
3
o Proposition 3. 3.
5 Assume NgC© Ny CNyC...CR are compact spaces. Then
g
i n
< . = +N_» .
. jfl P(tN;Ns_q) = POE.N WNG) = (14t) Q(E)
n
v where Q(t) = ¢ Q(t’Nj’Nj-l’No)’
¢ J=2
j Proof: For the compact spaces A D B D> C we conclude from the exactnes
j of the sequence (3.10) for every m > o:
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_ ro(A,8) - r°(A,C) + r(8,C)
3 - rl(a,8) + rl(A,C) - ri(B,C) + ...
‘ e (1™ ™a,8) - (-1)™ F™MALC) + (-1)" ¥"(B,C)
f - (-1)" d"(A,8.,C) = o
:1
: From this we deduce:
4 |
: - (=)™ d™(A,8.€) = (-1)™! d™}(a,B,0)
; 4 (-1)™ ¥™a,8) - (-1)" ¥™a,C) + (-1)" PP(B.C).
) Multiplication of this equation by (-1)m t" and addition over m
E yields ' ‘
3
b]
;
: Q(t.A.B.C) s = t q(t'A.B’c)
+ p(t'A’B) - p(t,AQC) + p(t,B,C),
;
3 or equivalently:
p(t,A,B) + p(t,B.C) = p(t,A,C) + (1 + t) q(t,A,B,C).
; Application of this equality to the triples Nj 2 Nj-l o No’ j>2
g gives
p(t.Nj.NJ_l) + P(tN;_1oNg) = PIE.NGNG) + (1+8) a(t.N5Ng 1 No).
Adding these equations over j > 2 and setting Q(t):=t q(t,N,,N, 1,N )
“ - J:_Z J J- 0
? -61-
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one finds

o

4

2 n

. ; ;1 P(t.NgNs_ 1) = POL.NLNG) + (1+8) Q(t)
A as claimed; .

3.4. The Morse Index and the Morse inequalities for an isolated

ﬂ3 invariant set.

L A

Propdsifion 3.3 is in particular applicable to the filtration
"o C N1 c...c Nn found by Theorem 3.1 for a Morse decomposition of

an isolated invariant set. There is however not a unique filtration for

a given Morse decomposition, in fact there is also no unique index pair
(Nl’No) for an isolated invariant set. But we shall prove that
H(N;.N,) = H(N,, N,) for any two index pairs (N;.N)) for the same
isolated invariant set S. To do so we first recall the notion of a

pointed space. For any pair (X,A), the pointed spacé X/A is the pair

(3.12) X/A = ((X \ A) UI[A], [A]).

4
N
)

The points of X/A consist therefore of the points x € X \ A and an
additional distinguished point [A]. The topology of X/A 1is defined as
follows: a set UC X/A is open if either UC X\ A und U is open
in X, or if [A] €U and {UN (X \ A)} UA is open in X. In parti-

cular, if A = ¢, then [A] 1is open and closed in X/A. Another way to
define the pair (3.12) is X/A = (X/~, [A]), with ~ being the equi-

B valence relation in X defined by: x ~y if either x =y in case

N X,y A or if x,y € A, This equivalence relation simply identifies the

Y
¥
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points in A. Clearly if (X,A) dis a compact Hausdorff pair, then X/A

is also.

After. these preliminaries we can formulate the crucial fact,

{%E that the homotopy type of NI/N2 depénds only on S.

Theorem 3.2,
Eg Let (Nl’No) and (Ni,Nb) be two index pairs jor the isolated invari-
'?i ant set S. Then the pointed topological spaces Ny/N, and NE/NB ane
. homotopically equiualent:«{NI/NO] = [Ni/ﬂb] » 4§ we denote by [ ] the
%ﬁ equivalence class of poiﬁtgd spaced. We therejore can associate to S

the unique eqdi&alznce class
f-,:;. ‘ (3.13) h(S) = [NI/NOI ’

) whene (ﬁl.No) is any index pairn fon the isolated invarniant set S. We
53 call h(S) zthe (homotopy)index of S.

Postponing the proof of this theorem to the next section we first

3 state and prove the Morse theorem. Observe that if (X,Y) is any pair,
o v

# then for the Cech-cohomology (see [ 71) H(X,A) = H(X/A). Using then the
SE fact, that the cohomologies of two homotopically equivalent pairs are
3 isomorphic we therefore conclude from Theorem 3.2. the
L2

Corollary: .

?1 Let (Nl’No) and (FI.NA) be fwo index pains 4forn the isolated in-
X

0 variant set S. Then H(NJ,N,) s H(R.N).

.

4
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With H(Nl’No) we have found, up to isomorpnisms, the algepraic

invariant of the isolated invariant set S we are looking for. It is

5]
;ﬁ independent of the particular index pair for S chosen. We can there-
' fore define:
2
X
3 (3.14) P(t,h(S)) = p(t,NyuNy)
Eﬁ where (NI,NO) is any index pair for S. With this notation, we for-
3
1 mulate the main result of this section.
Theorem 3. 3.
Assume S 48 an isolated set in the Local fLow X. Let (Ml""’Mn)
4 be an admissible orndening o4 a Morse-decomposition of S. Then

n
ZP(t,h(M;)) = p(t,h(S)) + (1+t) Q(t) ,
J=1

whene the series Q(t) 4is degined as in Proposition 3.3. In particularn

TP

the‘coeééicienta 0f Q are nomnegative integers.

Proof: By theorem 3.1. there is a filtration No c Nl.c .ee C Nn for

§ A

the Morse-decomposition, such that (N ,N ) is an index pair for S

n’"o’
and (Nj’Nj-l) is an index pair for My 1 <j<n. Inview of (3.14)

o

AatA

the statement is an immediate consequence of Proposition 3.3. e

[ 254

oA

We point out that the term q(t,Nj,Nj_l.No) in theorem 3.3

gives some measure of the number of algebraic connections from Mj to

Wl

Mj-l.l‘ In fact we shall prove
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Proposition 3.4.

1§ Q(t.NpNg_1uNg) £ oo, then My ) C My g ) UMy but My g A M)

IUMJ-.

Prood: With the notation as in the proof of the previous theorem we con-
sider the compact sets Nj > Nj_1 > No' where (Nj’No) is an index pair
for Mj,l’ ?ﬁe pair (Nj-l'No) is an index pair for Mj-l,l Aand
(Nj’Nj-l) is an index pair for Mj. If (Nl’No) is an index pair for

S we can write H(h(S)) s H(Nl’No)' With this notation we have by
(3.10) the exact sequence: 3 H(h(M)) = H(R(M; 1)) = H(n(My_y 1)) $ ...
Assuming M; | =My, 1 UMy  we shall conclude & = o0, hence
Q(t.Nj,Nj_l,No) = 0 1in contradiction to the assumption. Rewording, we
set S = Mjl and S, = 5-1,1 and S, = 50 and have § =S, US,

with S2 N S1 = ¢. The above exact sequence then reads
(3.15) £ H(h(Sy)) + H(N(S; U S,)) + H(h(s))) $ .

We need a Lemma. We first recall that the sum v of two pointed
spaces (A,a) and (B,b) is defined to be AU B / {a,b} or, in other
word;, it is the pointed space obtained taking the union and identifying
the two distinguished points a and b. This sum is denoted.by (A,a)

v (B,b). It is easily seen to be well defined on homotopy classes, so

that [ (A,a)] v [(B,b)] can be defined to be [ (A,a) v (B,b)].

Lema 3.5. (Sum formula fon the index) 1§ S, and S, are {isotated in-
variant sets with S1 g S2 = g, then S1 v S2 48 an Lsolated Lnvariant
set and h(S; U S,) = h(S;) v h(S,).
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- Proof 04 tie Lemma: Choose disjoint index pairs (Nl’No) for S, and

(NI’NO? for S, f.e. N; N Nl = ¢, then (N, U Nl’ Ny U No) is an
index pair for S1 v S2 and it is easy to see that [N1 U Nl/No v Nb]
= [N}/N] v [Ni/ﬁ&]. Thus h(S; VU'S,) = h(s,) Y h(S,) as claimed. e

By the Lemma, we have H(h(S1 v Sz)) = H(h(Sl) v h(Sz)) which
is isomorphic to H(h(Sl))Gbli(h(Sz)). Therefore the exact sequence
(3.15) must break up into a collection of short exact sequences
o~ Hr(h(Sz)) > H"(h(s1 Us,)) + Hr(h(Sl)) + 0, and so, in particular,
the maps & are all trivial. This finishes the proof of Proposition

3.4, ¢

It is clear that by breaking up the Morse decomposition in
different ways, Q can be written as sum of terms measering connec-
tions between different Morse sets; of course the sum of these terms

would be the same.

3.5. Proof of theorem 3.2.

Let (X,A) be a pair, then the quotient map X + X/A, x - [x], defined
by [x] = x if x€ X\ A and [x] =[A] if x € A, is continuous. It
is surjective expect if A =g in which case it just misses the dis-

tinguished point [A]. The following statement is obvious:

Proposition 3.5,

Let f: (X,A) » (Y,B) be a continuous map beliveen the Bwo paitws (i.e.
f(A) C B). Then the induced map of pointed spaces f: X/A » Y/B desined
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by F(Ix1) = [F(X)] 48 also continuous. e

If (Nl’No) is an index pair for the isolated invariant set S,

. we define for t > o the following subsets of N,:

NP o= {y € N | ye[-t,0] € N}

3 (3.16)
g NE = tyeN | ylot1 Al # 8 DN
;3 These sets are compact, and positively invariant relative to Nl'

t

Roughly N; is NI "pushed forward" in time t and N; is No

“pulled backward" in time t. One can readily verify that (Nl,Ngt) is

also an index pair for S. In general, however, (Noﬁ N{

) 1is not an
index pair for S anymore, although it is, if X dis a two sided local
flow.

Now let i: (Nf, Nf n No) -> (Nl’No) be the inclusion map and
denote by 1 the induced map between the corresponding pointed spaces

as defined in proposition 3.5, theﬁ:
Lemma 3.6, Let t > 0. Then the {nduced map
(3.17) i NN By NN

‘ * 0 1 1'%

{8 a homotopy equivalence.

Prood: Let t > o and define the map

e et e atata a e s ata .




....................................

(3.18) F o (NN x Lo,1] = Ny/N,

by setting F([y],s) =[y-ot] 1in case y-[o0,0t] C N1 \ N° and

F([y] o) = [No] otherwise. By definition 3.4 of an index pair, this

map is well defined as a map between pointed spaces. We shall prbve

that it is continuous. Suppose F([v],o) # [Nj]1, then, by Def. 3.4 (ii),
y[o,ot] C N1 \ No’ Let U be any neighborhood of y-.ot disjoint

from No’ and let V be any neighborhood of y-io,at] disjoint from
No' By the continuity of the flow there are neighborhoods W of vy

and W' of o such that if (y',0') CWx W' then y'-c't€ U and-
v'*[o,0't] € V. It now follows from definition 3.4 (iii) and VN N° =
that y'-{0,0't] € N; \ N, hence F([y'l, ¢') =[v'-0't] = y'-a't € U;
hence F is continuods at ([y},o). Suppose F(ly],o) = [No]’ If
v[o,at] & Nl’ then for y' close to y and o' close to o we. have
v'*[0,0't] ¢ Ny, hence F(ly'],0') = [Ny, and F is continuous at
([y],o). Suppose finally that F([y]l,) = [Nol and y-{o0,0t] C Nl’ then
y.ot € No' Let U be a neighborhood of [N, ] in NI/No‘ Then there is a
neighborhood U of N, such that (NN U} =T Now if (y',a') is
close to (y,0), then y‘'-0't € U by the continuity of the flow. If
v'‘[o,0't] C Nl’ then F(y',of) = [yf'o't] €U If y:-[o,o't] ¢ Nl’
then F(y',0') = [N € U. In either case, if (y',0') 1is close to
(vs0)s F(v',0') €U, so F 1is continuous at ([y] ,o) and having exhaus-

ted 211 the possibilities, F is continuous.

If o= 1, the map F(-,1): NI/N° has its range in
(NS U NJ)/N, = NI/(N 0 NE)Let £ be the map F(-,1) but considered

as a map from N,/N._ into Nt/ NN Nt). Then, ~ meaning homotopic to,
1'% 1"V 1
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(3.19) Tof=F(-1)~id on NN,

by definition.of F. On the other hand, since Nf

is positively in-
variant relative to Nl’ the restriction of F to (N{ v No)/No x (0,1}
has range in (N: v No)/No‘ Let Fr denote this restricted map as a

map into (Nf U No)/No' Then

(3.20) foisF(-,1)~id on N/(N nab
* r'? 1Y% 1/°

From (3.19) and (3.20) the.Lemma follows. o

Next define for t > o the map

et t t
(3.21) g: Ny/NE « NE/ (N 0 AD)

by setting g({y]) =[y-t] if y-[o0,t] €N, \ N, and g(lv])

= [N, 0 N{] otherwise. This map is in fact well defined as a map be-
tween pointed spaces. Indeed, if y € N°, then, by definition,

v[0,t] & N) \ N, hence g(ly]) = [N, N N1, Also, if ye(o,t]
cm\%)mmy¢eﬁangmn-nﬂeNM%n@)n

required.
Lemma 3.7. The map ¢ defined by (3.21) 48 a homeomorphism.

Proog: Assume g([y]) = [N, N NS1, then y-lo,t] & Nj \ N, and there-

§

4 -

ﬁ; ‘ fore, by Definition 3.4, y-[o,t] N No # #, hence y € Not and thus
g'l([N° N Nf]) = [N;t]. Moreover, if (71] and [yzl are not équal to
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[N;t] in NI/N;t. then vy'[0,tl and y,-[o,t] are contained in
. . : t t
1 \ N° .and £ t# Yo t. Therefore [ylot] # [yz-t] in N1/<N~ N Nl)
and g 1s injective. We claim that ¢ is surjective. Let y € Nf \ No’
then there is a y' € N1 with y'-[o,t] C N1 \ No and y'‘t =y
proving the c1iim. Proceeding as in Lemma 3.6 one sees that the map g
is continuous, since g 1is a map between compact Hausdorff spaces it
must therefore be a homeomorphism. e
Let now j : (Nl,No) - (NI,N;t) be the inclusion map. For its
induced map j we shall prove

'Leoma 3.8. The map j Ny/Ny > I/N't 48 a homotopy equivalence.

0

‘Proof: Consider the sequence of maps

J ot It ty |
Ny/Ng = Ny/Ng™ =~ Ny/ (Ng 0 Np) = Ny /A,

By the definitions, g o j = f, where f is defined in Lemma 3.6,
hence (i 0g)o j = i o f~id on NI/N by (3.19). Also, by (3.20),

(g o j) 0 iafoinid on N1/(N N Nl) Therefore, since, by Lemma
3.7, the map g is a homeomorphism, j o (i 0g)~id on Nl/No » Which

proves the Lemma. e

.It was shown in theorem 3.1, that if N is any isolating neigh-
borhood of S = I(N), then there is an index pair (Nl’No) for S such
that No c N1 C N, and such that, moreover, N1 and N° are positively
invariant relative to N. Such an index pair will be called an index pair

contained in N. We observe that for an index'pair (Nl’No) contained in

-70-

.......
‘A‘-‘l.--V' Al - bl w Tt - ~ M . . M e ~ : :
. - \. AT P A S L AT R AT S TR N RN '
b et e e T T e L e




N we have IT(N)C N, and I*(N) NN =5, where I7(N) = {y €N !
y'R"C N} and I%(N) = {ye N | y-R* N}

Lema 3.9, Let (Nl’No) and (Nl’No) be two index paiw jor S = I(N)
contained {in N. Then there exists a t > 0 Such .that:

(NS, N, by (LY

(N, W, N W) © (NNE) .

Proogs Since 17(N) Ny» if vy € cI(N\ N)) then v'R™ ¢ N. By com-
pactnes of cI(N \ Nl) there is a t; 20 such that y € c1(N \ Nl)
implies y-[-t;,0] # N. Similarly, if ye& N, then y-R* ¢ N and there
is a t, such that y € N0 implies y-[o,tol ¢ N. Let 'fl and 'Eo be
the corresponding numbers for the pair (Nl’No)’ and put t = max

{tl,"f .to,fo}. Suppose y € NI. Then y+(-t,0] C N1 C N and hence

v € cI(N\T,) and therefore ye W, and N e W. If ye (N ON))
c'N'l. then y-[o,7] ¢ N and so by definition (3.4) (iii) there is a

t < t, such that y-[o,t] C Nl and y-t € N'o. therefore y € No't and
so vy €N T. Consequently (N;, N, O ND) € (N, N, 7). The other in-

clusion follows the same way. e

Lenma 3.10. Let (Nl’No) and (NI,NO) be two index pains fon S con-
tained in the isofating neighbonhood N 0f S = I(N). Then [Ni/NJ =
[NI/NOI .

Prood: Let t > o0 be as in Lemma 3.9, and let 11 and 'iz be the

——an

L
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inclusion maps of the corresponding pairs in Lemma 3.9. Denote by il
and %2 the corresponding induced maps between the pointed spaces. Con-

sider the sequence of maps:

i, g i
t t 1 -t t t 2
N/ (N AN = T /R = T/ (R 0y

-t

9 t t, 1 -t
Ny/NG© = Ni/(N QNG >0 T/RSE

where the map g respectively g 1is defined by means of the flow in

(3.21). Observe now that by definition 1,05 o4y =JoioFodoi,
since both mappings map [y]) onto [y-t] or onto [N;t]. Hence, by the
Lemmata 3.6 - 3.8, 12 0go ;1 is a homotopy equivalence. Similarly

11 0go 12 is a homotopy equivalence. Now, if one has any sequence

. x

1 > X2 - x3 of maps such that x o ¢ and ¢ o x are homotopy

equivalences, then all the maps ¢,x and y are homotopy equivalences.

- -

Applying this observa’ion we conclude, that g o ;1, iz and il o g are
homotopy equivalences and hence, by Lemma 3.7 also the map i1 is a
homotopy equivalence. Now the sequence of maps

3 i

J g t, 1

-t 9 .t
NNy > NNGE - 7N 0 N)

g i
ot t t
N+ N/@a W)~ /A,

shows that [Ny/N)) = [N;/N]. o

In order to prove theorem 3.2 we have to show that N1/N° is

equivalent to N&/Nb for two arbitrary indexpairs (N),N)) and
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(N'.Nb) for S. For this purpose we shall show that they are equi-
valent to two index pairs both contained in a common isolating neigh-
borhood of S. In view of Lemma 3.10 this will then finish off the
proof of theorem 3.2.

Let (Nl’No) be an index pair for S. Pick an isolating neigh-
borhood N' of S whose interior contains c1(N1 \ No)’ and define
the pair (NI.N ) = (N'n Nl’ N NN ) which is an index pair for §
contained 1n the isolating neighborhood N: = N' N N1 of S. In fact,

"

from N1 \ N =N\ N, we conclude that cl(N; \ No) is an isolating

~

neighborhood for S. Moreover, No
‘o

N1 In fact, if y € N \ N, and if vylo,t] & N1 define t* = sup
N N

N N

is positively invariant relative to
N

s | ylo,s] € Ny \ N,}. Then y-t* € cl(Ny \ N)) = cI(N; \ Nj) € N'.

But y-t* 1is not in the 1nterior of cl1(N; \ N,), therefore . t* € No
and so y-t*e N N N‘ = N

N oA
Lema 3,117, N1/No 48 homeomorphic o Ny /N,
N N NS N
Proo4d: Clearly N, \ N, = N, \ N. and N, c N,,N_ C N_. The inclusion
Proof: Clearly Ny \ Ny =M\ M 1€ Nl €l
mp i: = (Nl’No) -> (Nl.No) therefore induces the required homeomor-
phism 1. .

Let now N be any isolating neighborhood of S contained in
~ ~ - -
N1 \ N = N1 \ N . By theorem 3.1 there is an index pair (Nl'No) in
N1 such that Nl and N are positively invariant relative to N and

such that c1(N1 \ N ) € int N As above, the pair (N1 N N N N N) is

an index pair for S in N such that (Nlr\N;/(N r\N) is homeomorphic to

N A
1/" (Lemma 3.11). But also (NN, ) is an index pair in N and there-




fore, by Lemma 3.10, we conclude that Ny;/N, s homotopically equi-
valent to (N1 n N)/(No N N.

Summarizing we have proved that Nl/N has the homotopy type

0
of an index pair in ﬁ, namely of that given by (ﬁl N ﬁ)/(ﬁo N ﬁ).
Thus if (NI'N ) 1is any index pair and ﬁ C int (N1 \ No) is any
compact neighborhood of S, then NI/N has the same homotopy type as
the index pairs of S in N If (NI,N ) is another index pair of S,
we now simply choose N interior to cl(Ni \ Nb) and with Lemma 3.10

the proof of theorem 3.2 follows. e

3.6. Comparison with classical Morse-theory

The present approach is a generalization of Morse's theory which
had as its original aim to find lower bounds for the number of critical
points of a smooth function on a manifold.

~ 'Suppose f(x) 1is a smooth function on a compact closed mani-
fold' M of dimension d. Then the equation x = vf(x) defines a flow
on M. This f16w will be taken as the flow on T = M, also the local
flow ,X_ will be taken to be all of M as well as the isolated in-
variant set S. Hence I =M = X = S, Suppose now that f has only
finitely many critical points, say {x } . p. We claim that the sets
M. = {x;} form a Morse decomposition of S = M. In fact, if x€M
and t > 0 then either x:t =x or f(x-t) > f(x). This implies that
f 1is constant on the 1imit sets w(x) and w*(x), so both these sets
must be rest points and, unless x is a reSt point, f(w(x)) > flw¥(x)).
Now let (xo.xl.....xn) be any ordering of the rest points such that if

J>1 then f(xj) 3_f(xi). Then the condition (in Definition 3.1) that
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(xo.xl.....xn) is an admissible ordering of a Morse decomposition is

satisfied. ‘
To arrive at Morse's statements it is necessary to find the

p(t,h(xi)) for the Morse sets Mi = {xi}. In the case that X4 is a non-

degenerate rest point, the gradient equation can be written in a local

corrdinate system y centered at the rest point y = o, and after

stretching the variables y = ex, as

§_ = A_Xx_ + g_(x)
X, = Ax, +g.[(x).

Here x = (x_,x )€ E xE =E= Rd, and <x_,A_x_> 5_-x|x_l2 and

<x, oA x> g_xlx,,_l2 for some X > o. Moreover g = (g_,g. ) satisfies

g(0) = 0, g'(0) = 0, and in |x| < 2 we have the estimate [g| < &,

lg'l <& with & tending to zero as ¢ tends to zero. Let now Q be
the unitsquare Q= {x€E| |x_ | < 1 and |x+|‘5 1}, If x € 3Q then
x| =1 or x| =1.1f xeq and [x_| < lx,] then & Ix %=

= 2<x_,A_x_+g_(x)> 5_-A|x_|2 choosing 48 < A. Similarly, if (x| < Ix_|»
then & [x,12 2 alx,I2% This impltes, that 1f N, =Q and N, =

{xe€qQ| [x.| =1}, then (NjsNy) s an index pair for the critical

point Xy under consideration. We claim that
dq
(3.22) p(t.h(xi)) =t , dy=dimE.

This is seen as follows: the pair (Nl’No) is obviously homotopically
equivalent to the pair (0™,20"), m = dy» where 0" - {(x,50) | Ix,| <1}
is the closed unit disc in E_, and 30" = {(x,+0) | Ix | = 1} the unit

sphere. Therefore NI/No is homotopically equivalent to Dm/abm which is

the same as the sphere of dimension m = di with a distinguished point.
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Therefore the cohomology has rank o in all dimensions ex-

cept the dimension di’ where it has rank one. Thus (3.22) is verified.

d
Also, (M,#) 1is an index pair for S =M and p(t,h(S)) = ¢
. j=0
Bj ti where Bj is the j'th Betti number of the manifold M. The
n
statement p(t,h(xi)) = p(t,h(S)) + (1+t) Q(t) then includes the
i=0

Morse inequalities for gradient flows on compact closed manifolds. If

all the critical points are nondegenerate we have:

n d, d .
It o= g B td + (1+t) Q(t),
{=0 J=o0

where Q(t) = 9, + tq1 + ... 1is a polynomial with integer nonnegative
coefficients qj > 0. In particular we read off that vy Z.Bj’ where
vj is the number of critical points {x;} having d; =J as dimen-

sions of its unstable invariant manifold.

- In S. Smale's generalization of the above Morse theorem [8],
some 6f the critical points are replaced by the periodic solutions of a
flow, which together serve as Morse sets. He assumes that these periodic
solutions and critical points are finite in number and comprise the non
wandering set. That they form a Morse decomposition comes from his im-
posed "no cycle" condition. It can easily be shown that for a nonde-
generate periodic orbit Mj(i.e. no Floquet-multiplier equal to 1)

having an crientable unstable manifold, p(t.h(Mj)) = td + td+1

» Where d
is the dimension of the unstable manifold of the Poincare map. Also,
when the unstable manifold is non-orientable, it is the same, if Z2
coefficients are used, and is o otherwise. In fact, let us consider

the orientable case. It is well known, that locally in a neighborhood

P
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of a nondegenerate periodic solution, the flow is topologically equi-
valent to a linear flow: ;c_ =X X, ® X, é = 1. Here ¢(mod Zw)esl
and S1 3'{(0.0,3) | 6 € Sl} corresponds to the periodic solution. Now

if Ni: = B_ x s! and Nb: =38_n {lx+| s g} x st then (N&,Nb) is

T
£ i

with B: and aBe as above for the critical point it is obvious that J
g an index pair for the periodic orbit. If dim X, ‘

> 2 then the
cohomology of 8e x S1 has rank 1 in dimensions o and 1 and o
otherwise, while that for B_ N {Ix,| = e} has rank 1 in dimensions

0,1,d'-1 and d'.

Then the exact sequence for the pair (NE,NB) im-
plies that the cohomology of (Ni,Nb) has rank 1 in dimensions d!

and d'*1, 1¢ dy < 2 the proof follows similar lines.

Remarks: We end this section with an informal description of
some further properties of the index and with some remarks about their

possible use in applications. For the precise statements and their

proofs we refer, however, to [4] and to H.L. Kurland (23].

a) We have seen that the polynomial equality in Theorem 3.3
comes immediately from the filtration N, € ... © N, and apriori does
not‘depend on what Morse set is inside Nj \ Nj-l' That is, the homo-
topy type of Nj / Nj-l doesn't aliow much to be concluded gbout Mj
1tself unless it is known to be a nondegenerate critical point or
periodic orbit or say, some invariant manifold with a hyperbolic normal
flow. We should mention however that there is a general relation be-
tween the cohomology of the index of S, that of S and that of the
unstable set from S; Namely, let N be an isolating neighborhood of
S and let I"(N) = {ye N | y-RTC N} On I (N)\ S define the equi-

valence relation: y ~ y' 1{f there is an orbit segment contained in N
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7; and connecting y and y'. Let a  be the unstable set from S de-
i fined as the quotient space, a- = (I (N) \ S)}/~. Then one can conclude
;ﬁ by the continuity property of Cech cohomology that there is an exact
B sequen'ce B

ﬁ§ .8

& +H(@") = H(n(S)) =+ H(S) =

"j Thus the index has in it that part of the cohomology of S and of a~
iﬁ that do not cancel each other. For a proof we refer to R. Churchill

1 (10], see also (5]. For example, in the case where S an orientable
’f' periodic orbit other then.an attractor, the first cohomology of S

;j always cancels a corresponding class in a_, and so does not show up
¥ in the index. (This is not generally true for isolated invariant sets
X that are circles).

b) The present approach to Morse theory shows that the part of

-

NN

Morse's work concerning existence of critical points makes no actual
use of special properties of the spaces, for example they need not be
manifolds, nor is it necessary to approximate infinite dimensional
space; by finfte dimensional ones. The required compactness can be
there even in infinite dimensions. Here it is particularly useful to

have the flexibility provided by the concept of (one-sided) local flow

;%

X. One of the main points of the present approach is that the sets which
have an index need not be critical points, in fact an index is defined
for any isolated invariant set. The value of this becomes particularly
apparent when familfes of flows are'treaded. In such problems it is seen
that there is a natural way to each isolated invariant set of a given

flow a corresponding isolated invariant set for each nearby flow. It can
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g be shown that these "continued" sets have the same index as those from
5 which they arise under perturbation. This is like the "Homotopy axiom"
of degree theory. Now even if one starts with a critical point, it may
continue to an invariant set which is not comprised just of critical

points. For example, consider the family ; = ux - x3. When u < o, the

set {x=0} is an attracting point. Mowever, it continues for u > o,
to the full set of bounded solutions S = {x | -u < x < + u}. This set
contains the three critical points together with the two "connecting“
solutions. Therefore, to use Morse's theory to study critical points
of parametrized families of gradient flows (for example to do "bifur-
cation tﬁeory“) it is already necessary to have an index for sets other
than sets of critical points. One other point should be made about the
above sketched continuation theorem. In contrast to the situation in
degree theory, the homotopy index has some "internal" structure, name-
ly, that of a pointed space. The continuation theorem says that the
isomorphism between the indices of two sets related by continuation
is determined.by‘the homotopy class of the arc along which the conti-
nuation takes place; and it may be different for arcs in different homo-
tdpy classes. This added structure can also be useful in studying fami-
1ies of flows.

¢) As with degree theory, there are also "sum" and "product"
formulas for the index theory. If S, and S, are disjoint isolated

invariant sets of a local flow then S1 z S1 U S2 is isolated and its

index is the "sum" of those of S1 and SZ (i.e. the pointed space ob-
tained by identifying the distinguished point of h(Sl)w:with that of
h(Sz)). For example, one sometimes wants to prdvé the existence of a ‘

solution connecting two critical points. This can be done if the points

-79-

- T T AT AT AT T e A A e PRI P I I A T LI PN e et e e e .
¥.\‘o.\.’\'_\<\’,._.‘\'_‘h.._.,._.(._ R S T L S X R SoL
“ \"~. .‘ & x- - - . " - . - ,\. UL AP A .‘u _A| ..- .-- .. - . . . . e .

S A A S VR SR

S AR AN S B PR . o
Yy N "'\" T AR UL IR R TS e e LT : B CTe L

...................
---



?ﬁ&-u I T T rm——
o

:*‘ Appendix: An 2xample of a local flow,

§ ] In order to illustrate the purpose of the concept of a local

f\ flow introduced in section 3.1 we consider the solutions of a special

'E% partial differential equation. More precisely we consider the following
;y simple example of an initial boundary value problem for a weakly coupled
:i semilinear parabolic system, which is not necessarily of variational

;% structure. It is a special case of a general problem studied by H. Amann
’ (20 .

.. g% - A(x,D)u = f(x,u) in a x (0,=)

;}, (A.1) - B(x,0)u = o on 238 x (0,»)

* ' u(o,*) = u, in O

Here 2 c R" is a bounded domain whose boundary, aq, is an
(n-1)-dimensional c2+“«uanifo1d Tor some u € (o,i). The differential
operator A(x,D)u = (a(x,D)ul,...,a(x,D)uN), us= (ul,...,uN): Q x [o,-)--RN

is a diagonal uniformly elliptic and positive second order differential

operator with coefficients in C*(@). The boundary operator B(x,D) is a

zi- diagonal Dirichlet or Neumann boundary operator. Let D C RN be an

N arbitrary closed bounded convex set containing o € RN. For the non=-
:; linearity we impose the following smoothnes conditions: f : @ x D - RN
g is continuous, f(*,£): T -+ AN is cM-Ho1der continuous uniformly with

ﬁ respect to ¢ €D and f(x,*): D -+ RN is locally Lipschitz-continuous
:' uniformly with respect to x € @. In addition, we impose on the boundary,
i% 3D, of the set D the following tangency condition for the vectorfields
lﬁ f(x,"): let £ € 3D, then we denote by N(so) the set of outer normals
’; to 3D at £,> 3nd we require that

7

4

"

~-80-




W

P
%

LRI ALY

45

P, 81,4

ok

& coxa v

)

make up a Morse decomposition of an isolated invariant set S whose
index is not the sum of those of the critical points (sée {9] for
example). This brings out again the significance of Q in Theorem

3.3. Namely, the non-zero coefficients in Q(t,N;» Ns_;.N;) corresronc to
connectiong from Mj to Mj-l.l' The product theorem applies when the
flow breaks up into two flows e.q. x = f(x), y = g(y). If $4 is an
isolated invariant set for the first flow and S, for the second, then
S= S1 x Sz is an isolated invariant set for the full equations, and
h(S) is the “smash product" of h(Sl) and h(Sz). This theorem finds
applications when a given set (not a product) can be continued to one

which is a product.
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(A.Z) : : < p, f(x,E) ><0

for every x € Q, every £ € 3D and every p € N(g). It is well known
[20, Theorenm 1}, that in view of the restriction (A.2) the system (A.1)
has a unique regular solution u for every given Uy € Cz(ﬁ; RN) which
satisfies Buo =0 and uc(ﬁ) C D, moreover u € C2+"(§'x (0,=), RN).
By a regular solution of (A.l) we mean a function u € C2'1(§7x (o,a),RN)
A 107 x [0,=), RY) such that u(x,t) € D and Lu(x,t) = f(x,u(x,t))
for (x,t) € 0 x (0,») (where L = g%. + A(x,D)), and Bu(x,t) = 0o for

(x,t) € 3a x (0,») and u(o,x) = u(x) for x €0 .

For our purpose it is more conventient to-formulate protlem (A.1)
as an abstract semilinear evolution equation in the Banach space
B = Lp(n,RN) for p > 2n, whose norm we denote by lvi. Let
W:={ue Nﬁ (n,RN) | B(x,D)u = 0}, then the operator A = A(x,D) with
domain D(A) : = W generates an analytic semigroup in Lp(n,R"). Defining
for 0 <a <1 the scale of Banachspaces B : = D(A%) with norms Iulu:=lA°ul,
and setting B, = B, one knows that for o0 <a <8 <1, the space B, is
continuously and densely embedded in BG. Moreover, since the resolvent of the
operator A 1{s compact, this embedding is compact if a < 8, For more
details and references we refer to [20] . Now set M: = {(u€ B | u(x) €D
a.e. in q} and put F(u) (x) : = f(x,u(x)). Then (A.1) 1is equivalent to

the evol tion equation
(A.3) u+hu=Fu), u(o)=u €MNB,

for some 8 > 0 [20, Lemma 7.2] , and if u 1is a solution, then
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u(t) € Mn BB for all t > o. Moreover u solves the integral equation
At toA(t-s)
(A.4) - u(t) = e ug + /e F(u(s)) ds .
(]

Since u(t) e Mn B8 for all t > o we conclude from (A.4), in view of
the well known properties of linear analytic semigroups, the following

estimates for all t,tr > o:

(u(t)], < cla,8) (1 + [ugly)
(A.5)

lu(t) = u(x)l < ca,80) (1 + fugly) feeel”,
where 0 <a <8 and o0 <'v < B-a, Conversely, it is easily seen that a
solution u(t) of the integral equation satisfying the estimates (A.5) for
some 0 <a < B 1is a solution of the evolution eqﬁation (A.3).

After these preliminaries we introduce a flow and a subflow
promted by the estimates (A.5). Namely we let I be the Banach-space of
continuous curves vy : R~ B with the sup-norm for some « > 0.0n T
a trivial continuous flow is in a natural way introduced by setting for

every t €R
vy o t(t): = y(t¢t), all t€R,

We now define a subset X Cr as follows. Let o0 <a <8 <1,
0<v <B=a and C1 > 0 be given constants and set
X={yer | y(t)€By, v(o) eMNB,, [v(t)[, <C and [v(t) - v(7)], <

c, [t-<|® for all t,r € R, moreover, for t > o the curve y is a so-

lutfon of the equation (A.3) with initial condition y(o0)}. We claim
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Lemma A, 1. X C T {8 compact.

Proof. Since Ba = Ba is compactly embedded, we conclude by the
Arzela~-Ascoli theorem that the closure of X in r, X, is a compact
subset of I, It remains to show that X = X, We first observe that the

5 15 closed in B, Indeed,
let x, €K with x, >x in B, then [x |, = |a% | < 1. By the

reflexivity of B we conclude for a subsequence Aexn -y weakly in

closed ball K = {u € By I [ul8 < 1} in B

B and |y| < 1. Since = L (B) 1is compact we conclude X * A'By
in B and hence x = A'By. Therefore x € B, and leB = lAsx[ = [yl <1
as claimed. Pick v € X, then there is a sequence v, € X with y +v
- in T and by the above observation we conclude that for every te R,
Iy(t)lB < C; and moreover [v(t) - Y(r)la 5_c2|t-r|” for t,r € R, in
. addition y(o) €M, as M 1is closed in B. It remains to show that for
t >0 the curve y is a solution of (A.3), but this now follows since

v satisfies the integral equation (A.4). The Lemma is proved. e

From the local existence and uniqueness of the equation (A.3)

we conclude that (XN U) * [0,e) € X for every UCT open and every

€ > 0. Since, by Lemma A,1, the subset X< T 1is locally compact we con-
clude that X 1is a local flow of Tr. In this sense the index-theory des-
dribed in section 3 is applicable to the semiflow generated by the partial
differential equation (A.1). Similar to the exampie described above a
delay equation can give rise to a subflow of a trivial flow. Here the
past history, properly restricted, determines curves which satisfy the
relevant equation for positive times, For details and also for more

examples of local flows we refer to [ 4, Chapter IV.6] .
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u(t) e Mn B8 for all t > o, Moreover u solves the integral equation

(A.4) Cu(t) = &Pt

. .

uy + £ (%) Fu(s)) as .
o

Since u(t) e Mn BB for all t > o we concludes from (A.4), in view of

the well known properties of linear analyvtic semigroups, the following

estimates for all t,r > o:

()], < c(o8) (1 + [ugl,)
(A.5)
lU(t) - u(t)la :_C(G.B.V) (1+ luO‘B) [t'flv ’

where 0 <a <8 and 0 <'v < g-a, Conversely, it is easily seen that a
solution u(t) of the integral equation satisfying the estimates (A.5) for
some o0 <a <8 1is a solution of the evoluticn eqhation (A.3).

After these preliminaries we introduce a flow and a subflow
promted by the estimates (A.5). Namely we let T be the Banach-space of
continuous curves vy : R+ Bu with the sup-norm for some « > 0.0n T
a trivial continuous flow is in a natural way introduced by setting for

every t€R
vy » t(t): = y(x+t), all te€R.

We now define a subset X Cr as follows, Let 0 <a < <1,
0 <v < g=a and C1 > 0 be given constants and set
X={rer|y(t)eB, v(0)eMnB,, [v(t)[; <C; and [v(t) - v(r)l, <

C, [t-x|” for all t,r € R, moreover, for t >0 the curve y is a so-

lution of the equation (A.3) with initial condition y(0)}. We claim
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Lemma A.1, X € T {8 eompact.

Proof. Since BB c Bu is compactly embedded, we conclude by the
Arzela-Ascoli theorem that the closure of X in r, X, is a compact
subset of I, It remains to show that X = X, We first observe that the
closed ball K = {u & B8 [ [uIB < 1} in By is closed in B. Indeed,
let x, € K with x, »x in B8, then [xnlB
reflexivity of B we conclude for a subsequence ABxn -y weakly in

= 1A%, | < 1. By the

8 and |y| < 1. Since AR e o (B) is compact we conclude Xo * A8y
in B8 and hence x = A'ey. Therefore x € BB and lxlB s lABx[ = |y| <1
as claimed. Pick v € X, then there is a sequence y, € X with y =~y
- in T and by the above observation we conclude that for every te R,
Iy(t)ls < C; and moreover [y(t) - vy(1)|, g_czlt-r[“ for t,t €R, in
. addition v(o) € M, as M 1is closed in B. It remains to show that for
t >0 the curve y 1is a solution of (A.3), but this now follows since

v satisfies the integral equation (A.4). The Lemma is proved. e

From the local existence and uniqueness of the equation (A.3)
we conclude that (XN U) * [0,e) € X for every UCT open and avery
€ > 0. Since, by Lemma A,1, the subset XCr 1is locally compact we con-
clude that X 1is a local flow of . In this sense the index-theoty des-
dribed in section 3 is applicable to the semiflow generated by the partial
differential equation (A.1). Similar to the exampie described above a
delay equation can give rise to a subflow of a trivial flow. Here the
past history, properly restricted, determines curves which satisfy the
relevant equation for positive times. For details and also for more

examples of local flows we refer to (4, Chapter IV.6] .
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i " In view of possible applications to partial differential
equations we point out that by relaxing the required compactnes
assumptions, K.P. Rybakowski {21], [22], recently extended the concept
of the homotopy index to one-sided semiflows which are not necessarily

defined on locally compact metric spaces. His definition applies more

directly to semilinear parabolic equations.
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